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Abstract

Improper manual material handling (MMH) techniques are shown to lead to low back pain, the 

most common work-related musculoskeletal disorder. Due to the complex nature and variability 

of MMH and obtrusiveness and subjectiveness of existing hazard analysis methods, providing 

systematic, continuous, and automated risk assessment is challenging. We present a machine 

learning algorithm to detect and classify MMH tasks using minimally-intrusive instrumented 

insoles and chest-mounted accelerometers. Six participants performed standing, walking, lifting/

lowering, carrying, side-to-side load transferring (i.e., 5.7 kg and 12.5 kg), and pushing/pulling. 

Lifting and carrying loads as well as hazardous behaviors (i.e., stooping, overextending and jerky 

lifting) were detected with 85.3%/81.5% average accuracies with/without chest accelerometer. The 

proposed system allows for continuous exposure assessment during MMH and provides objective 

data for use with analytical risk assessment models that can be used to increase workplace safety 

through exposure estimation.
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1. Introduction

The most common class of non-fatal work-related injuries regardless of industry is from 

overexertion. Many of these injuries are the result of manual materials handling (MMH) 
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(Bhattacharya and Pandalai, 2015). Work related musculoskeletal disorders (WMSDs) 

accounted for 30% of all days away from work (DAFW) cases in 2018 for a total of 272,780 

cases (U.S. Bureau of Labor Statistics, 2020). In the same year, WMSD cases in professions 

specifically involving MMH activities (i.e., construction, freight, and stock) and patient 

handling activities (PHA) (i.e., nursing and healthcare) represented 40-50% of all DAFW 

cases in their respective fields (U.S. Bureau of Labor Statistics, 2020). WMSDs often lead 

to chronic conditions or disabilities, incurring many additional direct and indirect costs 

totalling $13.3 billion USD in the 2021 Liberty Mutual workplace safety index (Liberty 

Mutual Insurance, 2021). Within the umbrella of WMSDs, lower back injuries and lower 

back pain (LBP) represent 51% of all WMSD cases (Umer et al., 2018), representing 

injuries with the highest cost and health burden (Lawrence et al., 1998). Improper lifting 

techniques; pushing, pulling, lifting, and carrying heavy loads; twisting and bending of the 

back; frequent repetition of physical tasks; prolonged standing and sitting; and whole-body 

vibrations have been shown to lead to WMSDs (Marras et al., 2010; Parakkat et al., 2007; 

Murtezani et al., 2011).

To characterize exposure during MMH tasks and mitigate WMSD and injury risk, several 

ergonomic assessment tools and methods have been developed. The existing risk assessment 

methods such as the Revised NIOSH Lifting equation (RNLE) (Waters et al., 1993, 1994; 

Lu et al., 2014), the Assessment Tool for Repetitive Tasks (ART) (Ferreira et al., 2009), 

and Manual Handling Assessment Charts (MAC) (Monnington et al., 2002; Pinder, 2002) 

relate factors such as posture, frequency, load, and duration of the repetitive movements 

to assess injury risk. Many of these factors can be obtained using observational methods 

(Spector et al., 2014) or direct measurements (e.g. using wearable sensors, accelerometers, 

or inertial measurement units (IMUs)) (David, 2005; Donisi et al., 2021). Unfortunately, 

IMU measurements cannot directly estimate the loads that are lifted or carried, which is one 

of the most important parameters in risk assessment analytical tools. Additional limitations 

with these risk estimation methods include: reliance on cross-sectional or case-control 

studies, dependence on job titles or self-reported physical exposure resulting in imprecise 

exposure estimates (Kilbom, 1994), and inadequate techniques to quantify complex physical 

exposures for tasks with varying loads, hand locations, and/or job rotation (Antwi-Afari et 

al., 2019). Moreover, the multiple complex tasks performed by a single worker in modern 

industries requires continuous monitoring for accurate exposure assessment.

Advances in sensing and analytical methods (Marras et al., 1992; Feyen et al., 1999; 

Chaffin, 2007; Vignais et al., 2013) along with recent developments in wearable 

technologies have laid the groundwork for longitudinal and advanced monitoring of 

workers’ exposures (Faber et al., 2016). Better exposure data from wearable technologies 

and smart algorithms can enhance our ability to predict chronic incidences of WMSDs and 

their implications on total worker health.

Determining work activities and task timings using wearable sensors for ergonomic risk 

estimation methods are feasible means of exposure estimation, yet has proven difficult 

(Kim and Nussbaum, 2014; Maman et al., 2017; Lin et al., 2016). Combining a machine 

learning approach with body-mounted IMU measurements has been shown to achieve 90% 

verification accuracy in three task classifications (Nath et al., 2018). Applying the same 
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methods to differentiating individually between correct and incorrect lifting posture showed 

verification accuracies of up to 99.4% with 8 IMUs and 76.9% with a single trunk IMU 

(Conforti et al., 2020). A single accelerometer on the chest was also employed to classify 15 

different simulated activities with 93%-98% accuracy (Hosseinian et al., 2019). Recently, it 

was shown that a single IMU sensor can be used to detect MMH activities with 78%-86% 

accuracy, with its specific location affecting the accuracy of the detected activities, while 

multi-sensor configuration can achieve accuracies of >97% (Porta et al., 2021). However, 

relying on measurements from only IMUs does not provide information about the load, 

which has been shown as an important independent risk factor (David, 2005).

The use of only instrumented insoles to detect and classify MMH events may overcome 

many of these limitations. It is a promising alternative solution, due to its minimally invasive 

measurement approach that does not require workers to wear any body-mounted sensors, 

and is appropriate for use in various workplaces including harsh working environments 

that require wearing other personal protection equipment (PPE). Kim and Nussbaum (Kim 

and Nussbaum, 2014) included information from pressure sensitive insoles in addition 

to 17 wearable IMUs and classified six generic MMH tasks with 90% accuracy. The 

classification algorithm had difficulty identifying the start and end time of the task and 

no load information was provided (Kim and Nussbaum, 2014). Wearable and Connected 

Gait Analytics System (WCGAS) developed in (Chen et al., 2018) used the plantar pressure 

distribution map images and Kinect skeleton model to classify the MMH activities. Only 

quasi-static postures were analyzed without detecting the actual values of force exertions. 

Antwi-Afari et al. (2018) demonstrated a high overall verification accuracy (99.7%) in 

distinguishing between five static MMH tasks using only plantar pressure distribution and 

a SVM classifier. Similarly, only static postures were considered with no dynamic tasks or 

task transitions, and tasks were classified individually. In a later study from the same group 

(Antwi-Afari et al., 2019), a combination of static and dynamic tasks were included reaching 

classification accuracy of 94%, although no task transitions and lifting load characterization 

was reported. In addition, load characterization using footwear sensors and a pressure-map 

manifold was previously investigated during patient handling activities (Lin et al., 2017). 

However, only a qualitative load description was provided (i.e., no, low, or high) and no 

actual values were measured or classified. While the instrumented insoles have shown 

promise in detecting the qualitative loads, the largest shortcoming when entirely removing 

IMUs from the system is the lack of sufficient data for distinction between activities where 

the wearer’s weight is not supported by the feet (e.g. double kneeling or crawling) (Antwi-

Afari et al., 2019).

The goal of this study was to develop an algorithm to detect and classify MMH activities as 

well as the load lifted and carried based on the measurements from instrumented insoles and 

a single chest-mounted accelerometer. The algorithm would have the capability to extract 

important exposure parameters to be used for injury risk estimation of workers performing 

MMH tasks, including task duration, cumulative activity distributions, and lifting frequency.
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2. Methods

2.1. Participants

Six young adult males; mean ± SD; age: 29.7 ± 3.2 years; height: 179.2 ± 4.1 cm; mass: 

78.5 ± 8.9 kg; shoe size: 27.6 ± 0.6 cm; with no prior musculoskeletal disorders or back pain 

history participated in the study. We restricted the inclusion of participants by requiring them 

to be capable of and comfortable lifting a 15 kg load. Prior to the test, the participants were 

informed about the study protocol and signed the informed consent form approved by the 

Institutional Review Board at the University of Utah.

2.2. Experimental protocol and tasks

The participants performed MMH tasks as shown in Fig. 1. These tasks included lifting/

lowering, side-to-side transferring, carrying a box, standing and walking without carrying a 

load, as well as pushing or pulling a cart. The mass of the box and lifting behavior varied 

during the test. The performed tasks are described below:

A. ‘LiftLowerSquat’ and ‘LiftLowerStoop’: Participants used both hands to lift the 

box from the floor on to the table and lower it from the table on to the floor. In 

between each lifting/lowering, the participants paused for 2 seconds. Tests were 

repeated for 5.7 kg and 12.5 kg loads, and for a squat and stoop posture; see Fig. 

1a. During both tasks, the horizontal distance of the handholds on the box from 

the participant’s center line was approximately 40cm.

B. ‘LiftExtend’ and ‘LiftJerky’: Participants performed the overextended lifting of 

5.7 and 12.5 kg loads positioned 63 cm in front of the participant (Waters et 

al., 1994) on a table and jerky lifting from the floor. The participants reached 

over with both hands and moved the box on the ground. After a 2 sec rest, the 

participant lifted the box in a fast jerky manner and positioned it on the table; see 

Fig. 1b.

C. ‘SideAsym’: Participants asymmetrically lifted the box from one side to another 

(90 degrees in either direction) using body rotation and minimal movement of 

feet. Distance between participants’ mid plane and each table was 63 cm; see 

Fig. 1c (left).

D. ‘SideShoulder’: Participants lifted/lowered 5.7 and 12.5 kg box from the table/

knuckle height on to the cabinet of chest height, turning slightly; see Fig. 1d. 

Participants stood and rested for 2 sec between each lift.

E. ‘Carry’: Participants lifted and carried the box for 10 m then lowered the box 

down. Two different box weights (5.7 and 12.5 kg) and initial/end positions 

(lifting from the floor and lifting from the table height) were considered; see Fig. 

1f. In addition, participants carried box for a short distance from one table to 

another without any trunk asymmetry, and position their feet and themselves in 

front of the table to mimic short carrying tasks; see Fig. 1c (right).
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F. ‘Push’ and ‘Puli’: Participants pushed the cart with both hands for 5 m and 

paused for 2 sec. Then pulled the cart back to the initial position; see Fig. 1e. The 

load on the cart was 85 kg.

G. ‘Stand’ and ‘Walk’: Rest activities during the above-mentioned activities were 

classified as standing. Participants walked the same path and distance as during 

carrying.

Activities were grouped into four test sets. Each set lasted approximately 20 minutes. There 

was a 5 min-utes rest period between each test sets and data was not recorded during that 

time. Test sets were assigned to subjects in random order and only performed once per 

subject to prevent learning effects. Test set 1 included lift/lower tasks (Tasks A and B) 

between the floor and table, each performed repeatedly for approximately 3 minutes. Test set 

2 included lifting tasks SideAsym and SideShoulder (Tasks C and D) between two tables of 

same or increasing heights and on both sides of the table/cabinet, with each task performed 

repeatedly for approximately 3 minutes. Test set 3 included only carry tasks (Task E). Test 

set 4 included simple locomotion tasks Pull and Push (Task F) at a natural pace, followed by 

walking the same distance (Task G).

The same box with different weights inside was used in all lifting experiments. Box size was 

33 × 33 × 28 cm and had proper handles positioned 28 cm from the lower edge. Table height 

was set at 73 cm for all participants, approximately at the knuckle height while standing. 

The cart handle height was 90 cm from the floor. The height of the cabinet was 115 cm.

2.3. Risk Assessment

Six lifting activities (Stoop, Squat, Overextended, Jerky, Side Asymmetrical, and Side 

Shoulder) were analyzed using the RNLE (Waters et al., 1994) to demonstrate the ability 

of the machine learning classifier. Frequency Independent Recommended Weight Limit 

(FIRWL) was calculated initially, then used to calculate Recommended Weight Limit (RWL) 

and Lifting Index (LI) using classifier outputs for activity, load, and frequency. Table 1 

shows FIRWL values for the given six lifts, holding frequency and coupling multipliers 

constant at a value of 1. FIRWL was computed at the start and end of each lifting activity, 

with the minimum FIRWL considered as the recommended limit for the entire activity. Five 

out of the six activities showed similar limits for the start and end of the task, with less than 

1 kg difference between the two. One activity (overextended lifting) showed a significantly 

lower limit at the table end of the lift, due to overextension when moving the load.

Loads were chosen based on the maximum (11.6 kg) and minimum (6.5 kg) FIRWL in Table 

1. A weight guaranteed to be safe for all activities was chosen at approximately 10% below 

the minimum recommended load, while a weight guaranteed to be risk-probable for all 

activities was chosen at approximately 10% above the maximum recommended load. Thus, 

loads of 5.7 and 12.5 kg were used for “safe” and “risky” lifting respectively. The exact 

weight steps were limited by the combinations of weights available for the study, forcing 

values slightly larger or smaller than the target 10%. Frequency Independent Lifting Index 

(FILI) values with these two loads come to a maximum of 0.88 for the safe load during most 

risk-prone lift, and a minimum of 1.08 for the risky load during the safest lift.
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Pushing and pulling activities are not covered by the RNLE. Push and pull were instead 

analyzed using the Risk Assessment for Pushing and Pulling (RAPP) (Health and Safety 

Executive, 2016). RAPP defines the cart used in this study (self-supported movable structure 

on 3+ castor wheels without a steering mechanism) as a medium size cart. For medium 

sized carts, a safe or “low” level of risk is defined as < 250kg. Given the predefined 

static load (85 kg, “low”) and travel distance (5m, “short”) with optimal environmental 

variables (posture, “reasonable”; hand grip, “good”; equipment condition, “good”; floor 

surface, “good”; obstacles, “none”), the greatest potential for variation in risk level came 

from the frequency of the task.

RAPP provides a risk analysis, but does not differentiate between push and pull tasks of 

the same conditions. However, pulling can exert higher forces on the body, particularly the 

lower back (Pinupong et al., 2020), making pushing the recommended action over pulling 

when given the same load and environmental variables (Liberty Mutual Insurance, 2017). 

Thus, it is important that they are detected separately.

2.4. Measuring systems and data collection

The participants wore instrumented insoles (Science Pro+, zFLO Motion, Westbrook, ME; 

produced by Moticon GmbH, Germany) (Braun et al., 2015; Stöggl and Martiner, 2017; 

Oerbekke et al., 2017) and an accelerometer attached to the chest (Delsys Trigno wireless 

accelerometer, Delsys Inc., Natick, MA). Each insole contains 13 pressure sensitive cells, 

an integrated 3-axis accelerometer, and on-board memory for saving recorded data. The 

center of pressure (COP) in a shoe relative coordinate frame (x- and y-axis COP) are 

calculated and provided as the output signals from each insole. Prior to the start of the 

test of each participant, all force/pressure readings were zeroed to reduce the effect of 

pressure due to tightening of the shoes. Insole data were collected at 50 Hz sampling 

frequency and data from the accelerometer was recorded at 1926 Hz and downsampled to 50 

Hz. Simultaneously, we recorded and synchronized video of participants performing MMH 

tasks. The activities were labeled by the same observer for all participants to minimize the 

labeling discrepancies. The start and end of the event were determined as the instant when 

a secure grip on the box or cart was established and there was a noticeable exertion applied 

to move the load. The end of the event was determined as the instant when the box was 

securely placed or when the cart came to rest and the participant released the grip from the 

box or cart.

2.5. Dependent variables

In our analysis, we considered sixteen dependent variables. We summed the force 

contributions from all 13 sensors separately for the left and right insole to obtain variables, 

fzL and fzR, respectively. These signals represent the normal ground reaction forces per 

individual foot. Both signals were summed to obtain the resultant normal ground reaction 

force Fz. The location of the COP along the x- and y-axis in the shoe relative coordinate 

systems were considered for each insole, representing variables COPxL, COPyL, COPxR, and 

COPyR. To accommodate shoe size variations among the participants, the COP data were 

normalized as COPnormij= COPij /ShoeSizek, i = x, y, j = L, R, where ShoeSizek is the shoe 

size of the k-th participant and k = 1, …, N, where N is the total number of all participants.
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Three accelerations from each insole in their corresponding relative coordinate frames, 

ACCij, i = x, y, z, and j = L, R, were included as the individual variables. An additional 

three acceleration measurements ChestAccij, i = x,y, z, j = L, R, were included from an 

accelerometer mounted on the participants’ chest. In total, three force measurements, four 

COP signals and nine accelerations were considered in this analysis.

2.6. Data processing

To partially suppress the effects of body segment dynamics, we low-pass filtered the kinetic 

(i.e., forces/pressure) signals using a second-order Butterworth filter with a 1 Hz cut-off 

frequency (Trkov and Merryweather, 2018). Kinematic (i.e., accelerations) and COP data 

from the insoles were filtered using a fourth-order Butterworth filter with a 15 Hz cut-off 

frequency to eliminate sensor noise. Yu suggests common cutoff values of 3-15 Hz for 

acceleration filtering (Yu et al., 1999), due to the additional step of feature extraction being 

performed, the higher value of the range was used to preserve these features.

After filtering, data were pre-processed and prepared to be input into previously selected 

machine learning classifiers. Each frame of data included a label of activity and lifting/

carrying load used (i.e. no load, 5.7 kg, or 12.5 kg). Feature extraction was performed 

using a moving buffer. The initial buffer size of 2 seconds was chosen based on a previous 

study (Hosseinian et al., 2019), however, a larger range (0.5-3 seconds with an increment 

of 0.5 seconds) was tested to find the optimal buffer size that resulted in the highest overall 

accuracy. The sampling rate with which the buffer processed data was 10 Hz, chosen 

for 95% overlap between buffers. Extracting data in excess of 95% overlap only created 

redundant data points which did not significantly improve classifier accuracies.

For data contained in each buffer, six statistical features were computed: average, standard 

deviation, maximum, minimum, range, and kurtosis (Antwi-Afari et al., 2018). A total of 96 

signal features were calculated from 16 input signal variables.

10% of the total data available were separated at random to be used as an independent test 

set. The remaining 90% of the data were randomized and used to train classifiers with 5-fold 

cross validation. Due to the nature of the data collection, some actions inherently had more 

data than the others. Standing still with no load ‘Stand’ in particular made up ~50% of all 

data. This was remedied by under-sampling standing data at half the sampling rate to make 

it approximately equal to the next most prevalent activity (Carry, 5 & 12 kg). Training set 

data distribution is shown in Figure 2. This was combined with cross-validation to decrease 

overfitting on activities with more data. Under-sampling was not performed on the test set to 

better simulate the type of data that the classifier would be given to process.

2.7. Machine learning classifiers

The classification ability of the models was evaluated primarily on the overall accuracy 

considering MMH events with load distinction. Accuracy was calculated as shown in Eq. 1. 

As a secondary measurement, a high sensitivity or True Positive Rate (TPR) was considered 

of more importance than a high specificity or True Negative Rate (TNR), calculated with 

Eq. 2 and Eq. 3 respectively. False Negative Rate (FNR) as shown in confusion matrices 

is computed as the distance of TNR from 1. These measures were chosen because it is 
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more important for the classifier to over-predict than under-predict exposure. While over-

predictions could lead to false alarms, under-predictions can lead to undetected injuries. 

All prediction rates were calculated individually for each class without considering other 

classes, then the normalized values were averaged.

Accuracy = TruePositives + TrueNegatives
TotalSamples (1)

TPR = TruePositives
TruePositives + FalseNegatives (2)

TNR = 1 − TruePositives
TruePositives + FalseNegatives (3)

Five supervised machine learning classifiers were chosen to evaluate classification accuracy. 

The classifiers included Single Binary Decision Tree (ST), Bagged Trees Ensemble (BT), 

k-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Naive Bayes (NB) that 

have previously shown good performance in similar applications (Antwi-Afari et al., 2018; 

Anjum and Ilyas, 2013).

Single Binary Decision Tree (ST).—The single tree classifier is a simple classifier, 

chosen for its extremely light computational load and previous good performance in related 

studies (Antwi-Afari et al., 2018, 2019). Analyzing the differences between samples creates 

sets of interconnected tests called nodes. New examples are classified by creating a path 

through these nodes, with the final node being the classification label (Aly, 2005).

Bagged Trees Ensemble (BT).—Using a variable number of decision trees in a bagged 

tree classifier allows for increased accuracy over the single binary decision tree using the 

same principles.

Naive Bayes (NB).—The Naive Bayes classifier separates activities by maximizing 

aposterior probability, calculated using Bayes’ theorem (Aly, 2005). It was chosen based 

on previous successful detection of human daily physical activities using wearable sensors 

(Anjum and Ilyas, 2013).

k-Nearest Neighbors (KNN).—The KNN is a standard machine learning algorithm, 

frequently used in occupational activities classification studies (Antwi-Afari et al., 2018, 

2019; Lin et al., 2017; Kim and Nussbaum, 2014). It uses a similarity function, and classifies 

new examples the same as their closest neighbors in terms of the given function (Aly, 2005). 

The similarity function used here is euclidean distance.

Support Vector Machine (SVM).—Support vector machines are typically a binary 

classifier that can be extended to multi-class problems by projecting the data onto a 

higher dimension space (Aly, 2005). The SVM is considered to be a more intuitive and 

robust classifier than those previously discussed, based on minimizing the distance from 
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a respective class-separating hyperplane in a higher dimension (Aly, 2005). It has been 

shown to outperform other classifiers in similar activity detection using wearable insole data 

(Antwi-Afari et al., 2018).

2.8. Continuous lifting frequency

Automating the accurate collection of the frequency and duration for which activities are 

performed will allow for more accurate assessment of workers’ exposures over longer 

periods. The lift frequency over time for each activity was computed based on the detected 

activities obtained from the classification process. Raw predictive data was smoothed before 

calculating frequencies. Activities detected for less than 0.5 seconds continuously were 

treated as noise, and filtered out. With the noise removed, lifting frequency was computed 

over continuous time with a sliding window of one minute by summing the total number 

of occurrences within the window for each point in time. Frequency derived from model 

prediction was compared to frequency derived from manually labelled activities, computed 

in the same way. To maintain proper time series presentation, frequency estimation was only 

performed on a continuous test set.

3. Results

We compared the performance of the following five classifiers: K-Nearest Neighbors 

(KNN), Bagged Trees (BT) Ensemble, Support Vector Machine (SVM), Single Binary Tree 

(ST), and Naive Bayes (NB), using a test data set with 2 sec time window and 95% overlap. 

The top three performing classifiers for test data considering load distinction were SVM, 

KNN, and Bagged Trees with average overall accuracies of 85.3%, 85.3%, and 82.9%, 

respectively.

Figure 3 shows average accuracies for all classifiers with and without detecting differences 

in lifting and carrying loads. During this initial testing, Single Tree (67.9% accuracy) and 

Naive Bayes (69.2% accuracy) classifiers did not perform well and were not considered in 

further analyses. Considering only activities without distinguishing lifting load was found 

to offer very little additional predictive power to the model overall, as accuracies on best 

performing models increased by less than 2%. Therefore, classifiers with weight distinctive 

data were used due to the negligible cost of the added utility.

The top two performing classifiers were selected for further analysis. We performed buffer 

size analysis and parameter optimization. The KNN classifier was trained using euclidean 

equal distance weights and the tested k-value varied between 1 and 10 in steps of 1. Using 

k=5 performed best with an overall accuracy of 85.3%, an average sensitivity of 80.1%, and 

an average specificity of 76.7%. This k-value is similar to those used in related classification 

studies (Lin et al., 2017). The SVM used a gaussian distribution with a kernel scale varying 

from 1-10. The kernel scale of 7 performed best with an overall accuracy of 85.3%, an 

average sensitivity of 88.3%, and an average specificity of 78.7%. Figure 4 shows that the 

optimal window/buffer size was 2 seconds that resulted in the highest overall accuracy for 

both SVM and KNN classifiers. The optimal window size of 2 seconds was used in all 

classifications. Optimal KNN and SVM accuracies were equal, however, the SVM classifier 
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showed higher values of both sensitivity and specificity, and was used for the remainder of 

the study.

We performed the parameter analysis of data obtained from different sensors to investigate 

their effects on the overall accuracy of the classifier. Four different types of data 

(ground reaction forces (GRF), COP coordinates, and accelerations (ACC) from each 

shoe, and chest-mounted accelerometer (Chest Acc)) were considered individually and in 

combinations. Table 2 shows the comparison of accuracy results on independent test data 

for nine sensor combinations that were analyzed for the top performing (SVM) classifier. 

Classification when considering all parameters performed best with accuracies of 85.3%. 

Classification results using only measurements from the instrumented shoe sensors resulted 

in significantly lower accuracies of 80.7%. The inclusion of GRF data was shown to produce 

the highest accuracies when used in combination with ACC or COP, likely because it is 

the best separator of load weights. However, ACC signals from either the foot or chest 

outperform both GRF and COP signals by themselves, implying that accelerations are the 

single best predictor of different activity types. Classification accuracies when using COP 

signals were always lower than counterparts using the same number of signals, suggesting 

that it is the least important signal to consider for activity classification.

Table 3 shows the results of the accuracy, sensitivity, and specificity for each individual 

activity with and without load distinction for the trained SVM classifier. These results were 

calculated from the independent test dataset not used in validation. The highest consistent 

rates of prediction (accuracy and sensitivity both >90%) were carrying of both weights, pull, 

push, and walk. These activities all show more movement than any other activity while being 

performed. Thus, the classifier is best at predicting unique and dynamic tasks. Additionally, 

the only load-distinctive task in this group (carrying) showed similarly high values for both 

load levels.

On average, all activities have a sensitivity equal to or greater than their specificity, meaning 

the frames where a given activity was predicted were greater than the times that other 

activities were mis-predicted as the given activity. However, four outliers include Stand, 

LiftJerky (5.7kg), Carry (5.7kg), and Push. These activities were often predicted incorrectly. 

Stand was treated as the default state for all tasks, so a lower specificity is expected 

due to periods of uncertainty at the beginning and end of activities, attributed either to 

uncertainty or error during manual labelling. Push and carry activities are also justified by 

their already high values for accuracy and sensitivity. The discrepancy for the LiftJerky 

(5.7kg) activity, however, shows that it is frequently (14.3% of the time) interpreted as 

the wrong task but never classified when another activity should have been. Thus, the 

issue is likely twofold - decrease in activity due to speed of performance, and increase in 

uncertainty due to the length of the activity in relation to the length of the sliding window. 

Lifting activities overall averaged 81.5% accuracy, with activities LiftLowerSquat (5.7kg), 

LiftExtend (5.7kg), SideShoulder (5.7kg), LiftLowerSquat (12.5kg), and LiftJerky (12.5kg) 

less accurate than the mean. These activities are also classified with <80% accuracy when 

lifting load is not distinguished, suggesting that these activities themselves are more difficult 

to distinguish between in addition to the load level.
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Figure 5 shows the confusion matrix for the SVM classifier applied to the independent 

test set, with TPR and FNR given in cells for each combination of true and predicted 

activities. This chart gives further insight into the less accurate activities. Both load levels 

of LiftLowerSquat show similar amounts of mis-classification between load levels, which 

make up the most improper predictions for the two classes, confirming that load level is the 

most difficult factor to differentiate. This behaviour is replicated in LiftJerky and LiftExtend 

activities, but not in LiftLowerStoop which is primarily mis-classified as standing. Activities 

performed while standing still (SideShoulder, SideAsym) similarly show most of their mis-

classifications as standing, with the most standing mis-classifications from SideShoulder 

activities, classified as standing 21.2% of the time. These activities show comparatively few 

mis-classifications between load levels, however, suggesting that the activities themselves 

are more difficult to distinguish than the load level in this case.

Figure 6 shows the actual (solid) and computed (dotted) lifting frequencies over time 

for activities performed in test set 1. Noise was filtered from the predicted activities by 

disregarding activity signals that were not continuous for at least 0.5 seconds. Frequencies 

were computed using a sliding window of one minute. Activities LiftLowerSquat (5.7, 12.5 

kg) and LiftLowerStoop (12.5kg) reached the appropriate peak value, while LiftLowerStoop 

(5.7kg), LiftExtend (5.7, 12.5kg), and LiftJerky (5.7kg) reached 95%, 64%, 75%, and 88% 

of their true values, respectively. Data collection was terminated immediately at the end of 

the test, causing the abrupt stop to the frequency.

The frequency of each activity is used to calculate the Frequency Multiplier component 

of the RNLE (Waters et al., 1994) using the continuous estimations computed by Garg 

and Kappelusch (Garg and Kappelusch, 2016). The Frequency Multiplier, FIRWL of the 

detected activity, and load level were combined as shown in Eq. 4 to find Lifting Index over 

time where LI>1 is risky and LI<1 is safe. All values were calculated for the duration of the 

test.

LI = Load
FM ∗ FIRW L (4)

As shown in Figure 6, risk stays below 1 while performing lifts with a safe weight. When 

unsafe activities or an unsafe weight is used, it increases over 1. During some activities, the 

FM does not significantly change the FIRWL, giving a constant value. This implies a safe 

frequency, but an inherently safe/unsafe task.

4. Discussion

The proposed algorithm and system advance the continuous exposure measurements of 

MMH workers performing MMH tasks. It is an enabling tool that provides detailed 

information about occupational exposures during prolonged periods of time and can 

be potentially used to advance our understanding of the exposure dose-injury response 

relationship for development of occupational LBP.
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One of the advantages of the proposed algorithm and system is that it provides information 

of frequency, duration, and activity type in addition to a single risk value for the activity 

being performed. This information has an important practical application as it can be used 

to guide task scheduling for workers with varying time scales, for example, hourly, daily, 

or weekly. It expands on previous research by computing a real-time single variable of 

risk with the RNLE Load Index, which takes into account the activity type, load level, 

and frequency. The duration of individual activities can also be easily determined from 

frequency detection for later analysis, however, this value is less useful for risk assessment 

as the duration is pre-defined as the test length or work shift length.

This research primarily builds on previous research by Antwi-Afari et al. (2018, 2019), 

where instrumented insoles were used to classify a similar set of individual activities. It 

improves the previous research work by additionally detecting the load level of the activity 

and computing the frequency of the activity. More recent research by Antwi-Afari et al. 

(2020) also computes a frequency over time and load level, but does not classify activities 

individually, similar to the approach of Donisi et al. (2021) who used a single accelerometer 

to directly classify activities as safe or unsafe. These approaches do not offer any additional 

information on whether the activity, frequency, or load level caused the risk. This study 

aimed to improve upon these by first classifying activities and load levels as shown by Lin et 

al. (2017), then computing and showing a continuous calculation of the potential risk as the 

frequency changes. This offers real-time advice on when the work needs to slow down, or 

when the activity or load level is unsafe by itself.

Instrumented insoles have been previously used to detect individual activities when the 

load level was predefined. However, a changing level of load is important to test for 

true application to MMH. Recently, varied load levels have been tested by Donisi et al. 

(2021), but only for the purpose of binary classification (safe/unsafe). Previously, Antwi-

Afari et al. (2020) showed that load level values can be directly computed from insole 

force measurements. This research builds on what has already been experimented with 

by exploring the possibility of combining load level detection into the machine learning 

classifier.

This study includes also some limitations, specifically in how the activities were manually 

labeled. We tried to minimize these potential errors by using the same observer for labeling 

activities across all participants to minimize the discrepancies. However, due to possible 

human errors, the exact start and end point of the activities could introduce an error in 

activity labeling and consequently result in lower classification accuracy.

Another particular limitation of the study was using only two different loads that were 

relatively small compared to the participant’s mass. Inclusion of various loads, including 

those greater than 12.5 kg is suggested for future studies as this was out of the scope of 

this paper. We specifically chose two distinct weights, because a goal of our study was to 

investigate if using distinctive load classes is a viable approach. The results confirm the 

validity of this approach, as there was a relatively small difference in the overall accuracy 

(2%) and the computational cost of distinguishing between carrying weights was small. 

Participants’ similarity may also influence the conclusions, as all participants were of similar 
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proportions out of the same population. Future studies will remedy this by collecting data 

from a wider range and larger number of participants, as well as directly from occupational 

workers.

Finally, risk factors over time were unable to be computed for some activities, so only 

test sets with continuous performance of activities that had calculable risk were shown for 

demonstration. Push, pull, and carry all have available counterparts to the RNLE (Liberty 

Mutual Insurance, 2017; Health and Safety Executive, 2016), however, none provide a 

succinct risk variable as the Lifting Index of the RNLE does. Future studies will aim to find 

or create similar values to better form a complete risk assessment method.

The main application of this method is to show when the worker is exceeding recommended 

criteria. Whether the criteria is exceeded or not, the method additionally provides 

information about the specific activity being performed, the load level detected, and the 

frequency of detection. This helps both workers and supervisors pinpoint sources of injury 

by determining whether an activity is being performed at an unsafe rate or with an unsafe 

load. Alternately, it can also warn when the activity itself is not feasible regardless of the 

load and frequency. Additional multipliers can be added to the risk estimation to include 

different populations (i.e. back injuries, lifting limitations) to further customize this risk 

quantification to the given set of participants or workers.

In summary, the algorithm can immediately detect hazardous activities (i.e., overextension, 

jerky lifts, and asymmetric side-to-side lifts) that can be used to provide immediate feedback 

(i.e., audio, visual, vibrotactile) to the worker. Moreover, the algorithm can provide a 

cumulative assessment of their exposure through prolonged periods of time and serves as an 

enabling tool to perform longitudinal studies of ergonomic exposure to workers performing 

MMH tasks.

5. Conclusion

In this study, we tested a method for collecting data for ergonomic risk estimates using 

instrumented insoles and a chest mounted accelerometer. Data obtained were 3-axis 

accelerations, ground reaction forces, and center of pressure coordinates for each foot 

as well as 3-axis accelerations at the chest. We evaluated a variety of machine learning 

classifiers to detect a set of MMH activities based on the measurements from these sensors. 

The best classifier trained was SVM with 85.3% overall accuracy on an independent test set 

when classifying 18 activities. A negligible difference in classification accuracy was found 

when distinguishing (18 classes) and not distinguishing (11 classes) activities of different 

lifting and carrying loads (< 2%). Out of the four different sensors used, combinations 

including the accelerations and GRF performed better than the rest at activity and load 

distinction respectively, with the highest accuracy when all data were included. Activity 

frequencies were continuously computed and tracked over time to calculate the RNLE Load 

Index, a single variable of risk quantification.

The proposed system enables potential longitudinal monitoring of workers at the workplace 

through direct measurements. It has the potential to be minimally invasive when using only 
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instrumented insoles, trading a ~4% drop in accuracy for a less obtrusive system - especially 

when using very thin (~2 mm) and flexible instrumented insoles that are small and flexible 

enough to minimally affect user comfort and gait. Implementation of our system in real 

occupational settings will be the aim of our future studies. Successful implementation of our 

research will help obtain detailed information about the actual exposures of workers that can 

contribute to advancing our understanding of the exposure dose-injury response relationship 

in low back pain and help in development of preventative strategies.
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Highlights

• A wearable system for the minimally invasive assessment of biomechanical 

risk is presented.

• Instrumented insoles provide features to differentiate lifting loads and 

postures during MMH tasks.

• Hazardous lifting techniques can be classified using machine learning and 

instrumented insole data.

• Wearable sensors can estimate lifting frequency, duration, and ergonomic risk 

during MMH.
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Figure 1: 
Manual material handling tasks performed by the participants during experimental testing. 

(a) Lifting in a squat (left) and stoop (right) postures. (b) Overextended lifting (left) and 

lifting with jerky behavior (right). (c) Asymmetric lifting with twisting torso and stationary 

feet (left) and carrying the box with proper positioning in front of the load (right). (d) 

Lifting/lowering of the box from the table/knuckle height to the chest height from right to 

left side (left) and left to right side (right). (e) Pushing (left) and pulling (right) a cart. (f) 

Lifting a box from the ground (left) and from the table (right) and carrying it.
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Figure 2: 
Distribution of data per activity type and weight.
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Figure 3: 
Results of classification accuracies for all classifiers (i.e., SVM, KNN, Bagged Tree, Naive 

Bayes, and Single Tree) with and without considering load distinction.
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Figure 4: 
Effect of the window size (i.e., buffer size) on the overall classification accuracy of SVM 

and KNN classifiers for data considering load distinction.
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Figure 5: 
Confusion matrix results for SVM classifier on an independent test set. Cell values show 

row normalized values (TPR, FNR).
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Figure 6: 
Continuous frequency computed from true activity as labeled manually (solid) and predicted 

activities filtered (dotted) for SVM classifier and the resulting RNLE Lifting Index.
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Table 1:

Frequency Independent Recommended Weight Limit (FIRWL) for lifting activities.

FIRWL (kg)

Activity Start End

Stoop 10.9 11.6

Squat 10.9 11.6

Extend 10.9 7.4

Jerky 10.9 11.6

SideAsym. 6.5 6.5

SideShoulder 7.6 6.7
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Table 2:

Average accuracy presented for parameter sensitivity analysis on performance of the SVM classifier 

considering individual or combination of parameters measured by the instrumented insoles (i.e., ACC, GRF, 

and COP) and chest-mounted accelerometer (i.e., Chest Acc).

Predictors Acc.

All (Shoe+Chest) 85%

All (Shoe) 80%

ACC/GRF 77%

GRF/COP 76%

COP/ACC 74%

ACC 68%

Chest Acc. 66%

GRF 64%

COP 63%

Appl Ergon. Author manuscript; available in PMC 2023 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Trkov et al. Page 26

Ta
b

le
 3

:

In
di

vi
du

al
 a

ct
iv

ity
 p

er
fo

rm
an

ce
 o

n 
a 

he
ld

 o
ut

 in
de

pe
nd

en
t t

es
t s

et
 f

or
 S

V
M

 c
la

ss
if

ie
r 

w
ith

 a
nd

 w
ith

ou
t w

ei
gh

t d
is

tin
ct

io
n.

A
ct

iv
it

y
w

/ W
ei

gh
ts

w
/o

 W
ei

gh
ts

Se
ns

.
A

cc
.

Sp
ec

.
Se

ns
.

A
cc

.
Sp

ec
.

St
an

d_
N

oL
oa

d
77

.5
%

84
.5

%
92

.9
%

75
.9

%
84

.3
%

94
.7

%

L
if

tL
ow

er
St

oo
p_

5.
7k

g
91

.3
%

82
.1

%
74

.7
%

96
.3

%
81

.3
%

70
.3

%

L
if

tL
ow

er
Sq

ua
t_

5.
7k

g
90

.7
%

70
.8

%
58

.1
%

93
.2

%
76

.7
%

65
.2

%

L
if

tE
xt

en
d_

5.
7k

g
94

.3
%

77
.0

%
65

.0
%

93
.1

%
77

.0
%

65
.7

%

L
if

tJ
er

ky
_5

.7
kg

85
.7

%
92

.3
%

10
0.

0%
10

0.
0%

85
.8

%
75

.1
%

Si
de

A
sy

m
_5

.7
kg

90
.8

%
84

.1
%

78
.4

%
93

.8
%

85
.3

%
78

.2
%

C
ar

ry
_5

.7
kg

90
.9

%
91

.0
%

91
.1

%
95

.9
%

94
.1

%
92

.3
%

Pu
ll_

n/
a

98
.2

%
95

.0
%

92
.1

%
97

.9
%

92
.2

%
87

.1
%

Pu
sh

_n
/a

92
.1

%
92

.2
%

92
.3

%
95

.1
%

95
.4

%
95

.7
%

Si
de

Sh
ou

ld
er

_5
.7

kg
80

.2
%

77
.2

%
74

.3
%

83
.6

%
75

.5
%

68
.9

%

Si
de

Sh
ou

ld
er

_1
2.

5k
g

92
.5

%
83

.2
%

75
.6

%
-

-
-

L
if

tL
ow

er
St

oo
p_

12
.5

kg
94

.3
%

82
.9

%
73

.9
%

-
-

-

L
if

tL
ow

er
Sq

ua
t_

12
.5

kg
88

.0
%

77
.2

%
68

.7
%

-
-

-

L
if

tE
xt

en
d_

12
.5

kg
97

.0
%

86
.3

%
77

.6
%

-
-

-

L
if

tJ
er

ky
_1

2.
5k

g
86

.6
%

80
.2

%
74

.7
%

-
-

-

Si
de

A
sy

m
_1

2.
5k

g
92

.1
%

85
.0

%
79

.0
%

-
-

-

C
ar

ry
_1

2.
5k

g
92

.4
%

92
.2

%
91

.9
%

-
-

-

W
al

k_
N

oL
oa

d
97

.8
%

93
.3

%
89

.2
%

97
.6

%
90

.7
%

84
.7

%

Appl Ergon. Author manuscript; available in PMC 2023 May 01.


	Abstract
	Introduction
	Methods
	Participants
	Experimental protocol and tasks
	Risk Assessment
	Measuring systems and data collection
	Dependent variables
	Data processing
	Machine learning classifiers
	Single Binary Decision Tree (ST).
	Bagged Trees Ensemble (BT).
	Naive Bayes (NB).
	k-Nearest Neighbors (KNN).
	Support Vector Machine (SVM).

	Continuous lifting frequency

	Results
	Discussion
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:
	Table 3:

