# Systematic Review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Supplemental Tables and Figures 

## Part 1: Self-Measured Compared to Office-Based Measurement of Blood Pressure in the Management of Adults With Hypertension

Table 1.1 Electronic search terms used for the current meta-analysis (Part 1 - Self-Measured Compared to Office-Based Measurement of Blood Pressure in the Management of Adults With Hypertension).

## PubMed Search

$\left.\begin{array}{|l|l|}\hline \text { (Blood Pressure Monitoring, Ambulatory [mesh] OR self care [mesh] OR telemedicine [mesh] OR } \\ \text { patient participation [tiab] OR ambulatory [tiab] OR kiosk [tiab] OR kiosks [tiab] OR self-monitor* } \\ \text { [tiab] OR self-measure* [tiab] OR self-care* [tiab] OR self-report* [tiab] OR telemonitor* [tiab] OR } \\ \text { tele-monitor* [tiab] OR home monitor* [tiab] OR telehealth [tiab] OR tele-health [tiab] OR } \\ \text { telemonitor* [tiab] OR tele-monitor* [tiab] OR telemedicine [tiab] OR patient-directed [tiab] OR } \\ \text { "patient directed" [tiab] OR HMBP [tiab] OR SMBP [tiab] OR home [tiab] OR white coat [tiab] OR } \\ \text { ((patient participation [ot] OR ambulatory [ot] OR kiosk [ot] OR kiosks [ot] OR self-monitor* [ot] OR } \\ \text { self-measure* [ot] OR self-care* [ot] OR self-report* [ot] OR telemonitor* [ot] OR tele-monitor* } \\ \text { [ot] OR home monitor* [ot] OR telehealth [ot] OR tele-health [ot] OR telemonitor* [ot] OR tele- } \\ \text { monitor* [ot] OR telemedicine [ot] OR patient-directed [tiab] OR "patient directed" [tiab] OR HMBP } \\ \text { [tiab] OR SMBP [tiab] OR home [ot] OR white coat [ot]) }\end{array} \quad \begin{array}{c}\text { Blood pressure monitoring } \\ \text { concept + Self Care concept }\end{array}\right]$.

|  | (review[pt] OR review[ti] OR comment[pt] OR editorial[pt] OR meta-analysis[pt] OR meta- <br> analysis[ti] OR letter[pt] OR In Vitro Techniques [Mesh] OR guideline[pt] OR case reports[pt] OR <br> case report[ti] OR news[pt] NOT ((review[pt] AND clinical trial[pt]) OR (meta-analysis[pt] AND <br> clinical trial[pt]))) | Remove non-trial publications |
| ---: | :--- | :--- |
| 6 | 4 NOT 5 |  |
| 7 | (animals[mh] NOT humans[mh]) | Remove animal studies |
| 8 | 6 NOT 7 | Rent |
| 9 | (randomized controlled trial[pt] OR random*[tiab]) | Limit to RCTs |
| 10 | 8 AND 9 |  |

## Embase Search

| 1 | Self care/ | Self Care concept |
| :---: | :---: | :---: |
| 2 | Telemedicine/ |  |
| 3 | (patient participation OR ambulatory OR kiosk OR kiosks OR self-care\$ OR self-monitor\$ OR selfmeasure\$ OR self-report\$ OR telemonitor\$ OR tele-monitor\$ OR telemedicine OR home monitor\$ OR telehealth OR tele-health OR telemonitor\$ OR tele-monitor\$ OR telemedicine OR patientdirected OR patient directed OR HMBP OR SMBP OR home OR white coat).ti,ab. |  |
| 4 | 1 or 2 or 3 |  |
| 5 | (office OR clinic OR primary care OR usual care OR physician OR doctor OR clinician OR standard care).ti,ab. | Office / Usual Care concept |
| 6 | 4 and 5 | Combine Above |
| 7 | Blood pressure monitoring/ | Add Blood Pressure Monitoring |
| 8 | 6 or 7 | concept |
| 9 | (Hypertension OR hypertensive OR blood pressure OR BP).ti,ab. | Add Hypertension concept |
| 10 | Hypertension/ |  |
| 11 | 9 or 10 |  |
| 12 | 8 and 11 |  |
| 13 | Random\$.ti,ab | Limit to RCTs |


| 14 | Randomized controlled trial/ |  |
| :---: | :--- | :--- |
| 15 | 13 or 14 |  |
| 16 | 12 and 15 | Remove non-trial publications |
| 17 | (book or book series or conference abstract or conference paper or conference proceeding or <br> "conference review" or editorial or letter or note or "review").pt. |  |
| 18 | 16 NOT 17 | Add Limits |
| 19 | limit 18 to (human and english language and exclude medline journals and yr="1966 -Current) |  |

Table 1.2. Summary of included studies

| Study (Author, year) | Inclusion criteria | Exclusion criteria | Sample size | Participant characteristics | Protocol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Midanik et al. 1991(1) | Untreated mild hypertension (average of 2 consecutive office SBP $<180 \mathrm{~mm} \mathrm{Hg}$ and DBP 90-99 mmHg | none | 204 | Mean age 47 <br> 52\% women 48\% black <br> Mean baseline SBP <br> 144.4 (15.7) mm Hg <br> Mean baseline DBP <br> 91.3 (9.1) mm Hg | - SMBP participants asked to measure BP twice a week, send their logs to study every 4 weeks <br> - told to contact their providers if SBP>220, DBP $>120$ or $<50 \mathrm{~mm} \mathrm{Hg}$ |
| Soghikhian et al, 1992(2) | Adults being treated for HTN or with office BP $>140 / 90 \mathrm{~mm} \mathrm{Hg}$ | Cardiovascular complications (not further defined) | 430 | Mean age 54 <br> 50\% women <br> 39\% black <br> Mean baseline SBP <br> 137.4 (1.2) mm Hg <br> Mean baseline DBP <br> 86.1 (0.6) mm Hg | - Participants in SMBP arm asked to check their BP twice a week, then mail a log once a month to study investigators. <br> - Investigators mailed the log to patients’ physicians |
| Staessen et al., 2004(3) | Office DBP >95 mm Hg untreated or on no more than 2 BP medications | Heart failure, unstable angina, stage 3-4 hypertensive retinopathy, severe comorbid illness, serum creatinine>2 mg/dl, MI or stroke within 1 year | 400 | Mean age 54 <br> 52\% women <br> Mean baseline SBP <br> 160.8 (18.6) mm Hg <br> Mean baseline DBP 101.8 <br> (7.4) mm Hg | -follow-up visits scheduled for both groups at 1 and 2 months, then every 2 months until 1 year <br> -SMBP group measured home BP twice a day for 1 week prior to each visit -goal DBP for both groups 80-89 mm Hg |


|  |  |  |  |  | -medication titrated according to protocol by study investigators -office BP used for control group, home BP used for SMBP group -if $\mathrm{DBP}<80 \mathrm{~mm} \mathrm{Hg}$ then medication decreased, if $80-89 \mathrm{~mm} \mathrm{Hg}$ no change, if $\geq 90 \mathrm{~mm} \mathrm{Hg}$ then increased |
| :---: | :---: | :---: | :---: | :---: | :---: |
| McManus et al., 2005(4) | Adults ages 35-75 on treatment for HTN Office BP between140/85 and 200/100 mm Hg | none | 441 | Mean age 62 48\% women 4\% black Mean baseline SBP 157.9 (15.7) mm Hg Mean baseline DBP 88.7 (7.3) mm Hg | -SMBP asked to measure their BP in the primary care doctor's office once a month -instructed to contact their physicians for BP outside of range -control group had visits at primary doctor's discretion |
| Marquez-Contreras et al. 2006(5) | Age 18-80 <br> Newly diagnosed HTN or already on medication but not controlled | Requiring $\geq 2$ medications to control BP , living with someone taking the same medication | 200 | Mean age 59 49\% women Mean baseline SBP 159 (16.6) mm Hg Mean baseline DBP 92.4 (10.8) mm Hg | -SMBP participants asked to measure BP 3 times a week -SMBP and control groups had study visits at 4,12 , and 24 weeks for medication titration - both groups used a monitoring events medication system (MEMS) to track adherence |
| Verberk et al., 2007(6) | Office SBP >139 mm Hg and/or DBP >89 mm Hg | none | 430 | Mean age 55 45\% women Mean baseline SBP 166.2 (19.3) mm Hg Mean baseline DBP 97.1 (9.9) mm Hg | -SMBP participants asked to measure their BP daily for 7 days prior to each clinic visit -medication for SMBP and control patients determined based on stepped titration protocol |


|  |  |  |  |  | -treating physicians blinded to patients’ groups, told only mean BP from study staff |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bosworth et al., 2009 <br> (7) | Diagnosis of HTN and treatment at least 12 months prior | Comorbidities that would interfere with self-measurement of BP | 317 (an additional 319 were randomized to either behavioral intervention or behavioral intervention plus SMBP) | Mean age 62 <br> $66 \%$ women <br> 49\% black <br> Mean baseline BP 125/71 | - Patients randomized to SMBP asked to measure BP 3 days a week - mailed BP logs to study team every 2 months - clinic visits for both arms every 6 months |
| Godwin et al., 2010(8) | On antihypertensive medication but not controlled (SBP $\geq 140$ mm Hg or $\mathrm{DBP} \geq 90$ mm Hg ), then underwent ABPM, required $\mathrm{SBP} \geq 135$ mmHg or DBP 85 mmHg | none | 552 | Mean age 68.8 51\% women Mean baseline SBP 147.3 (9.0) mm Hg Mean baseline DBP 81.2 (8.2) mm Hg | -SMBP participants asked to measure their BP weekly and to bring their log to regularly scheduled visits with their primary doctor |
| Varis et al., 2010(9) | Initial eligibility based on office BP>140/90 mm Hg, Then all eligible patients measured home BPx3 weeks, those on medication had a washout period. Final eligibility based on home DBP 85-110 mm Hg | malignant hypertension, mean home DBP>110 mmHg during the washout period, stroke or MI within 12 months prior to randomization, unstable angina, uncontrolled or symptomatic CHF, insulin-treated diabetes mellitus, serious hepatic failure (liver enzymes 2x normal values), renal insufficiency (fS-creatinine >140 $\square \mathrm{mol} / \mathrm{l}$ ), atrial fibrillation or having | 189 | Mean age not reported $61 \%$ women Mean baseline SBP 159.4 (18.3) mm Hg Mean baseline DBP 97.4 (8.9) mm Hg | -SMBP measured BP 3 times a week, mailed results to their doctors every 5 weeks |


|  |  | other serious comorbidities |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oliver et al., 2011(10)* | Uncontrolled HTN on 3 medications, defined as untreated SBP 159-200 mm Hg and/or DBP $99-120 \mathrm{~mm} \mathrm{Hg}$; treated SBP $140-200 \mathrm{~mm} \mathrm{Hg}$ and/or DBP 90-120 mm Hg; current treatment with a statin for LDL>100 mg/dL | Unstable angina, CV event (MI, angina, revascularization, arrhythmia) in the past 6 months, TIA or stroke in the past 6 months, creatinine >2.0 $\mathrm{mg} / \mathrm{dl}$ or calculated glomerular filtration rate $<40 \mathrm{~mL} / \mathrm{min}$ | 62 | Mean age 55 68\% women 75\% black Mean baseline SBP 155 mm Hg <br> Mean baseline DBP 88 mm Hg (SD not reported) | -focused on a high-risk underserved population with HTN and dyslipidemia -both usual care and SMBP groups started on amlodipine/atorvastatin combination pill -antihypertensives added in stepwise manner according to protocol for both groups -both groups seen monthly for BP checks -SMBP group measured home BP daily for 1 week prior to clinic visit -the higher of home or office BP was used for medication titration |
| Hebert et al., 2011(11)* | Self-described black or Hispanic with uncontrolled HTN ( $\geq 140 / 90$ or $\geq 130 / 80$ for patients with diabetes or CKD) for the last 2 clinic visits, $\geq 150 / 95$ ( $\geq 140 / 85$ with diabetes or CKD) confirmed at recruitment | Medical conditions that prevented interaction with a nurse, including blindness, deafness, cognitive impairment | 296 | Mean age not reported 59\% non-Hispanic black 37\% Hispanic 4\% black Hispanic | -protocol did not specify frequency of BP monitoring or how often results were transmitted to the study team or providers |
| McKinstry et al., 2013(12) | Initially screened if office SBP >145 or DBP $>85 \mathrm{~mm} \mathrm{Hg}$; then further screened with ABPM. Mean ambulatory blood pressure $>135 / 85 \mathrm{~mm}$ Hg | $\mathrm{BP} \geq 210 / 135 \mathrm{~mm} \mathrm{Hg}$, atrial fibrillation, receiving care for HTN by a specialist, recent cardiovascular event or other life-threatening illness in last 6 months | 401 | Mean age 60 50\% women <br> Mean baseline ABPM SBP 146 (10.6) mm Hg DBP 87.1 (10.0) mm Hg | - participants asked to measure BP twice a day for a week, then weekly - automatic transmission of BP readings through mobile phone <br> - participants could receive optional reports |


|  |  |  |  |  | based on the last 10 BP readings with feedback on the readings <br> - MDs given access to patients' BP logs, and encouraged to check weekly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hosseininasab et al. 2014 (13)* | Age $>18$ Office SBP 140/90159/99 mm Hg without medication or those already on antihypertensive treatment but not controlled | Severe cardiovascular comorbidities, serum creatinine $>1.5 \mathrm{mg} / \mathrm{dl}$ | 196 | Mean age 60 60\% women Mean baseline SBP 144.4 (7.4) mm Hg DBP 85.5 (6.9) mm Hg | -participants asked to measure their BP once daily -clinic visits for all participants at 4, 12 and 24 weeks <br> - pill counts performed at each visit |
| BP indicates blood pressure; HTN, hypertension; SMBP, self-monitored blood pressure; MI, myocardial infarction; CHF, congestive heart failure; TIA, transient ischemic attack; CV, cardiovascular; CKD, chronic kidney disease <br> *studies were excluded from the primary analysis of mean SBP because blood pressure variability was not reported |  |  |  |  |  |

Figure 1.1. All data for systolic blood pressure, adjusted for study duration*

## All data for Office SBP, adjusted for 6 vs 12 month

Study
Completed
Year Months

Figure 1.2 Funnel plot for differences in systolic blood pressure among studies with a 6- vs 12-month duration


Figure 1.3. Relative Risk for BP Control, Adjusted for Study Duration

## Relative risk for BP control, adjusted for month with prediction at $6 \& 12$ months



Figure 1.4. All Data Difference in Mean Medications at 6 Months

## All data for Difference in Mean Meds at 6 months



## Part 2: Targets for Blood Pressure Lowering During Antihypertensive Therapy in Adults

Table 2.1 Electronic search terms used for the current meta-analysis (Part 2 -Targets for blood pressure lowering).

## PubMed Search

| (hypertension[mh] OR hypertension[tiab] OR hypertensive[tiab] OR Prehypertension[mh] OR pre-hypertens*[tiab] OR <br> prehyperten*[tiab] OR borderline hyperten*[tiab] OR borderline blood pressure[tiab] OR antihypertensive agents[mh] <br> OR blood pressure/drug effects[mh] OR blood pressure[ti]) | Population concept |
| :--- | :--- |
| AND | Target Concept |
| (strict[tiab] OR tight[tiab] OR intensive[tiab] OR goal*[tiab] OR target*[tiab] or placebo[tiab] OR placebo[mh]) | Limit to english |
| AND | Limit to RCTs |
| eng[la] | Remove Animal Studies |
| AND | (randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized[tiab] OR randomised[tiab] OR |
| placebo[tiab] OR randomly[tiab] OR trial[tiab] OR groups[tiab]) | ROT |


| Additional PubMed Search |  |
| :--- | :--- |
| (hypertension[mh] OR hypertension[tiab] OR hypertensive[tiab] OR Prehypertension[mh] OR pre-hypertens*[tiab] OR <br> prehyperten*[tiab] OR borderline hyperten*[tiab] OR borderline blood pressure[tiab] OR antihypertensive agents[mh] <br> OR blood pressure/drug effects[mh] OR blood pressure[ti]) | Population concept |
| AND |  |
| (add* [tiab] OR concomitant[tiab] OR multipl*[tiab] OR polytherap*[tiab] OR drug therapy, combination[mh] OR "drug <br> combination"[all fields] OR combined[tiab] OR dual therapy[tiab] OR triple therapy[tiab] OR combination*[tiab] OR <br> combining[tiab] OR add-on[tiab] OR adjunct*[tiab] OR plus[tiab] OR "based therapy"[tiab] OR "based treatment"[tiab] <br> OR combination therapy[ot] OR combination treatment[ot] OR monotherapy[tiab] OR single agent[tiab]) | "intesity of therapy" <br> concept |


| AND |  |
| :--- | :--- |
| (no therapy[tiab] OR no treatment[tiab] OR usual care[tiab] OR standard care[tiab] OR observation[tiab] OR <br> placebo[tiab] OR placebo[mh]) | Limit to english |
| AND |  |
| AND | Limit to RCTs |
| (randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized[tiab] OR randomised[tiab] OR <br> placebo[tiab] OR randomly[tiab] OR trial[tiab] OR groups[tiab]) | Remove Animal Studies |
| NOT | (animals[mh] NOT human[mh]) |
| NOT | Remove clearly irrelevent |
| (pregnan*[tiab] OR pre-eclampsia[tiab] OR preeclampsia[tiab] OR ocular[tiab] OR glaucoma[tiab]) | populations |
| No date limit |  |

## Embase Search

|  | (*hypertension/ OR *diabetic hypertension/ OR *essential hypertension/ OR *resistant hypertension/ <br> or *systolic hypertension/ OR *borderline hypertension/ OR exp *antihypertensive agent/ OR *blood <br> pressure/ OR *Prehypertension/) |  |
| :--- | :--- | :--- |
| 1 | Population Concept |  |


| 13 | (pregnan\$ OR pre-eclampsia OR preeclampsia OR ocular OR glaucoma).ti,ab. | Remove clearly irrelevent <br> populations |
| :--- | :--- | :--- |
| 14 | 12 not 13 | Date Limit |
|  | 2008 - present date limit |  |

Table 2.2 PICO(TSS) FRAMEWORK (Part 2-Targets for blood pressure lowering)

|  | Inclusion Criteria | Exclusion criteria |
| :--- | :--- | :--- |
|  | Adults (>=18 years) with Primary <br>  <br> Hypertension or Hypertension due to <br> Chronic Kidney Disease. |  |
|  | Trials will not be limited by concomitant <br> or comorbid disease (i.e., studies of <br> persons with hypertension and diabetes <br> will be included). |  |
|  | "Lower" target systolic/diastolic/mean |  |
|  | arterial blood pressure | Studies in which the primary intent of the <br> treatment (and target blood pressure |
|  |  | randomization) was not specifically to |
|  |  | treat or lower blood pressure (e.g., use of |
|  | "Standard" or "higher" target |  |
| Interventions/ exposure | systolic/diastolic/mean arterial blood treat or prevent heart |  |

Table 2.3. Publications meeting inclusion criteria and excluded from primary analyses (Part 2 -Targets for blood pressure lowering)

| BLOOD PRESSURE (BP) |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | TARGETS |  |
| Author, Journal (Year) | Study Acronym | Intensive (lower) vs standard (higher) BP target | Notes (Exclusion reasons) |
| Systolic BP, mm Hg |  |  |  |
| Margolis KL, Diabetes Care (2014) | ACCORD <br> (14) | $<120$ vs < 140 | Subgroup analysis; standard vs intensive glycemic control of the composite primary outcome (deaths due to CVD, nonfatal myocardial infarction, and nonfatal stroke) |
| Margolis KL, J Gen Intern Med (2014) | ACCORD <br> (15) | $<120$ vs < 140 | Wrong outcome(s); No outcomes of interest |
| Reboldi G, Hypertension (2014) | $\begin{aligned} & \text { Cardio-Sys } \\ & \text { (16) } \end{aligned}$ | $<130$ vs $<140$ | Subgroup analysis; those with vs those without established CVD |
| White, J Am Geriatr Soc (2015) | SPS3 (17) | $<130$ vs $130-149$ | Subgroup analysis; aged $\geq 75$ vs $<75$ yrs |
| Palacio, Stroke (2014) | SPS3 (18) | $<130$ vs 130-149 | Subgroup analysis; results presented for participants with vs those without DM but not by blood pressure target |
| Pearce, Lancet Neurol (2014) | SPS3 (19) | $<130$ vs 130-149 | Wrong outcome(s); Not an outcome of interest; change in cognitive function as measured by CASI Z scores |
| Rakugi H, Hypertens Res (2010) | JATOS (20) | $<140$ vs $\geq 140$ to $<160$ | Wrong analysis reported; Intent-to-treat analysis not reported; Per protocol analysis only |
| Systolic/diastolic BP, mm Hg |  |  |  |
| Holman RR, NEJM (2008) | UKPDS (21) | $<150 / 85$ vs <180/105 | Not in-trial results reported, long-term follow-up only |
| Diastolic BP, mm Hg |  |  |  |
| Kjeldsen SE, J Hypertens (2000) | HOT (22) | $\leq 80 \mathrm{Hg}$ vs $\leq 90$ | Wrong analysis reported; Event counts not available |
| Zanchetti A, J Hypertension (2003) | HOT (23) | $\leq 80 \mathrm{Hg}$ vs $\leq 90$ | Subgroup analyses; smoking, high/lower serum cholesterol, higher/lower serum creatinine, with/without diabetes, ischaemic heart disease, |

## Mean Arterial Pressure, $\mathbf{m m ~ H g}$

Contreras G, Hypertension (2005) AASK (24)
$\leq 92$ vs 102-107
Wrong analysis reported; Results are presented by BP medication

Appel LJ, NEJM (2010)

Davis EM, Hypertension (2011)

Ku E, Kidney Intl (2015)

AASK (25)

AASK (26)

MDRD (27)
$\leq 92$ vs $102-107$
$\leq 92$ vs 102-107
$\leq 92$ vs $<107$ (age $\leq 60$ y) or 98 vs
$<113$ (age $\geq 61 \mathrm{y}$ )

Duplicate publication; renal outcomes results presented in other publication
Duplicate publication; renal outcomes results presented in other publication
Not in-trial results reported, long-term follow-up only

Table 2.4. Inclusion and exclusion criteria of study populations for randomized clinical trials of blood pressure targets.

| First <br> Author, <br> Journal, <br> Year (Year) | Study Acronym | Patient Population |  |  | BP Target Groups, mm Hg |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Inclusion criteria | Exclusion criteria | N | Intensive [lower], (n) | Standard [higher], <br> (n) |
|  |  |  |  |  | SBP |  |
| Ismail-Beigi F, Kidney International (2012) <br> Cushman WC, NEJM (2010) | $\underset{(28)(29)}{\mathrm{ACCORD}}$ | - Men and women aged 40-79 years <br> - Type 2 DM <br> - HbA1c $\geq 7.5 \%$ <br> - Hypertension (SBP 130-160 mmHg and taking $0,1,2$, or 3 antihypertensive medications, or SBP $161-170 \mathrm{mmHg}$ and taking 0,1 or 2 antihypertensive medications, or SBP $171-180 \mathrm{mmHg}$ and taking 0 or 1 antihypertensive medications) <br> - High-risk for CVD events <br> - 77 clinical sites in the U.S. and Canada | - $\mathrm{BMI}>45 \mathrm{~kg} / \mathrm{m}^{2}$ or weight loss $>10 \%$ in past 6 mo <br> - Serum creatinine $>1.5 \mathrm{mg} / \mathrm{dL}(132.6$ $\mu \mathrm{mol} / \mathrm{L}$ ) within the previous 2 mo <br> - History of hypoglycemic coma/seizure within past 12 mo <br> - History consistent with type 1 diabetes <br> - Transaminase >2 times the upper limit of normal or active liver disease <br> - Any ongoing medical therapy with known adverse interactions with the glycemic interventions (eg, corticosteroids, protease inhibitors) <br> - Cardiovascular event, procedure or hospitalization for unstable angina (past 3 mo ) <br> - Current symptomatic CHF, history of NYHA class III or IV CHF at any time, or ejection fraction (by any method) < 0.25 <br> - Other serious illness | 4733 | $\begin{aligned} & \mathrm{SBP}<120 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (2362) \end{aligned}$ | $\begin{aligned} & \text { SBP <140 mm Hg } \\ & \text { (2371) } \end{aligned}$ |
| $\begin{aligned} & \hline \text { Wright JT, } \\ & \text { NEJM (2015) } \end{aligned}$ | $\underset{(30)}{\mathbf{S P R I N T}}$ | - $\geq 50$ yrs of age <br> - SBP: $130-180 \mathrm{~mm} \mathrm{Hg}$ on 0 or 1 medication; SBP: $130-170 \mathrm{~mm} \mathrm{Hg}$ on up to 2 medications; SBP: 130 160 mm Hg on up to 3 medications; SBP: $130-150 \mathrm{~mm} \mathrm{Hg}$ on up to 4 medications <br> - Increased risk for CV events | - Diabetes mellitus <br> - Prior stroke <br> - Diagnosis of polycystic kidney disease <br> - eGFR $<20 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m} 2$ or endstage renal disease (ESRD) <br> - Cardiovascular event or procedure or hospitalization for unstable angina (past 3 months) <br> - Symptomatic heart failure (past 6 mo ) or LVEF < 35\% <br> - Any indication for a specific BP lowering medication | 9361 | $\begin{aligned} & \mathrm{SBP}<120 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (4678) \end{aligned}$ | $\begin{aligned} & \text { SBP <140 mm Hg } \\ & (4683) \end{aligned}$ |


|  |  |  | - Arm circumference too large or small to allow accurate measurement with available devices <br> - Other serious illness |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Verdecchia <br> P, Lancet <br> (2009) | Cardio- <br> Sis (31) | - Aged $\geq 55$ years <br> - Hypertension (SBP $\geq 150 \mathrm{~mm} \mathrm{Hg}$, receiving antihypertensive treatment for $\geq 12$ weeks) <br> - Non-diabetic <br> - $\geq 1$ additional risk factor as described in the guidelines of the European Society of Hypertension [Cigarette smoking, total cholesterol $\geq 5.2 \mathrm{mmol} / \mathrm{L}, \mathrm{HDL}-\mathrm{C}<1.0 \mathrm{mmol} / \mathrm{L}$, LDL-C $\geq 3.4 \mathrm{mmol} / \mathrm{L}$, family history of premature CVD in first degree relative, previous TIA or stroke, or established CAD or PAD | - History of diabetes (fasting glucose of $>=7.0 \mathrm{mmol} / \mathrm{L}$ ) <br> - Any disease reducing life expectancy <br> - Renal dysfunction (serum creatinine $>176.8 \mu \mathrm{~mol} / \mathrm{L}$ ) <br> - Clinically relevant hepatic disorders or hematological disorder <br> - Valvular heart disease <br> - Disorders confusing the electrocardiographic diagnosis of left ventricular hypertrophy <br> - Complete right bundle block <br> - Complete left bundle block <br> - Wolff-Parkinson-White syndrome <br> - Previous Q-wave myocardial infarction <br> - Paced heart rhythm <br> - Atrial fibrillation <br> - Substance misuse | 1111 | $\begin{aligned} & \mathrm{SBP}<130 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (558) \end{aligned}$ | $\begin{aligned} & \text { SBP <140 mm Hg } \\ & \text { (553) } \end{aligned}$ |
| Benavente OR, Lancet (2013) | SPS3 (32) | - Symptomatic small subcortical strokes (S3) with MRI confirmation (randomization must occur within 6 months of qualifying S3) <br> - Clinical lancunar stroke syndrome <br> - Absence of signs or symptoms of cortical dysfunction <br> - No ipsilateral cervical carotid stenosis ( $\geq 50 \%$ ) if the qualifying event is hemispheric <br> - No major-risk cardioembolic sources <br> - Patients from 81 centers in North America, Latin America and Spain | - Disabling stroke (modified Rankin score $\geq 4$ ) <br> - Previous intracranial haemorrhage from non-traumatic causes <br> - Cortical ischaemic stroke | 3020 | $\begin{aligned} & \mathrm{SBP}<130 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (1501) \end{aligned}$ | $\begin{aligned} & \text { SBP 130-149 mm Hg } \\ & \text { (1519) } \end{aligned}$ |
| $\begin{aligned} & \text { Ogihara T, } \\ & \text { Hypertension } \\ & (2010) \end{aligned}$ | $\begin{aligned} & \text { VALISH } \\ & \text { (33) } \end{aligned}$ | - Male or female <br> - $\geq 70$ and $<85$ years of age <br> - Isolated systolic hypertension (SBP $>160 \mathrm{~mm} \mathrm{Hg}$ and DBP $<90 \mathrm{~mm} \mathrm{Hg}$ ) <br> - Sitting SBP 160-199 mm Hg | - Not reported | 3260 | $\begin{aligned} & \mathrm{SBP}<140 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (1627) \end{aligned}$ | $\begin{aligned} & \mathrm{SBP} \geq 140 \text { to }<150 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (1633) \end{aligned}$ |


|  |  | - Previously untreated or are on other therapy that can be converted to valsartan. <br> - Patients from 461 centers in Japan |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JATOS, <br> Hypertens <br> Res (2008) <br> Hayashi K, <br> Hypertens <br> Res (2010) | JATOS <br> (34) (35) | - Male or female <br> - 65-85 years of age <br> - Essential hypertension [Persistent $\mathrm{SBP} \geq 160 \mathrm{~mm}$ Hg during a run-in period while receiving no antihypertensive drugs or receiving the same drug(s) for $\geq 4$ weeks] <br> - Intent to treat analysis <br> - Japanese | - DBP >= 120 mm Hg <br> - Secondary hypertension <br> - Recent stroke, MI, coronary angioplasty ( $<6$ months prior) <br> - Signs or symptoms of stroke <br> - Angina pectoris requiring hospitalization <br> - CHF of NYHA $\geq$ class II <br> - Persistent arrhythmia (atrial fibrillation, dissecting aneurysm of the aorta, occlusive arterial disease, hypertensive retinopathy, serum aspartate aminopeptidase or serum alanine aminotransferase levels more than double the respective upper limit of normal) <br> - Poorly controlled diabetes mellitus (Fasting blood sugar $\geq 200 \mathrm{mg} / \mathrm{dL}$, HbA1c of $8 \%$ or higher) <br> - Renal disease (Serum creatinine of 1.5 $\mathrm{mg} / \mathrm{dL}$ or higher) <br> - Malignant disease <br> - Collagen disease <br> - Considered unsuitable as subjects | 4418 | $\begin{aligned} & \text { SBP <140 } \\ & \mathrm{mm} \mathrm{Hg} \\ & (2212) \end{aligned}$ | $\begin{aligned} & \text { SBP } 140-160 \mathrm{~mm} \mathrm{Hg} \\ & \text { (2206) } \end{aligned}$ |
|  |  |  |  |  |  | BP/DBP |
| Schrier RW, NEJM (2014) | $\begin{aligned} & \text { HALT- } \\ & \text { PKD (36) } \end{aligned}$ | - 15 to 49 years of age <br> - Autosomal dominant polycistic kidney disease <br> - Estimated GFR >60 ml per minute per $1.73 \mathrm{~m}^{2}$ of body-surface area <br> - Relatively preserved kidney function <br> - At risk for progression to ESRD | - Documented renal vascular disease <br> - Albumin to creatinine ratio $\geq 0.5$ (study a) or $\geq 1.0$ (study b) <br> - Diabetes requiring insulin or oral hypoglycemic agents or a fasting serum glucose of $\geq 126 \mathrm{mg} / \mathrm{dl}$ or a random nonfasting glucose of $\geq 200$ mg/dl | 558 | $\begin{aligned} & \text { SBP/DBP } \\ & 95 / 60-110 / 75 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (274) \end{aligned}$ | SBP/DBP 120/70$130 / 80 \mathrm{~mm} \mathrm{Hg}$ (284) |
| Asayama K, Hypertens Res (2012) | $\begin{aligned} & \text { HOMED- } \\ & \text { BP (37) } \end{aligned}$ | - Mild-to-moderate hypertension <br> - $\geq 40$ years of age <br> - Treatment naive or previously treated patients whose antihypertensive drug | - DBP <65 mm Hg <br> - SBP < 110 mm Hg | 3518 | $\begin{aligned} & \hline \text { SBP/DBP } \\ & <125 /<80 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (1759) \end{aligned}$ | $\begin{aligned} & \text { SBP/DBP 125-134/ } \\ & \text { 80-84 mm Hg } \\ & (1759) \end{aligned}$ |


|  |  | treatment could be discontinued for $\geq 2$ weeks <br> - Maintained self-measured home BP of $135-179 \mathrm{~mm}$ Hg SBP or 85-119 mm Hg DBP off treatment <br> - Clinic BP off treatment: <220 mm Hg SBP and <125 mm Hg DBP |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ruggenenti <br> P, Lancet (2005) | $\begin{aligned} & \text { REIN-2 } \\ & (38) \end{aligned}$ | - Men or Women <br> - Age 18-70 years <br> - Non-diabetic nephropathy <br> - Persistent proteinuria <br> - Urinary protein excretion exceeding 1 g per 24 h for at least 3 months without evidence of urinary-tract infection or overt heart failure (NYHA Class III-IV). <br> - Had not received ACE-I therapy for $\geq$ 6 weeks <br> - Proteinuria of $1-3 \mathrm{~g}$ per 24 h with creatinine clearance $<45 \mathrm{~mL} /$ min per $1.73 \mathrm{~m}^{2}$ or proteinuria of $\geq 3 \mathrm{~g}$ per 24 h with creatinine clearance $<70 \mathrm{ml} / \mathrm{min}$ per $1.73 \mathrm{~m}^{\wedge} 2$ | - Treatment with corticosteroids, NSAIDs, immunosuppressive drugs <br> - Acute MI or cerebrovascular accident (in the previous 6 months) <br> - Severe uncontrolled hypertension <br> - Suspicion or evidence of renovascular disease <br> - Obstructive uropathy <br> - Comorbid conditions including: Type 1 diabetes mellitus, collagen disease, cancer <br> - Higher serum aminotransferase concentrations <br> - Chronic cough or history of allergy <br> - Poor tolerance to ACEI, or dihydropyridine CCB <br> - Drug or alcohol abuse <br> - Pregnancy or breastfeeding <br> - Ineffective contraception | 338 | $\begin{aligned} & \text { SBP/DBP } \\ & <130 / 80 \mathrm{~mm} \\ & \mathrm{Hg} \\ & (169) \end{aligned}$ | $\begin{aligned} & \text { DBP <90 mm Hg } \\ & \text { (169) } \end{aligned}$ |
| Wei Y, J Clin Hypertens (2013) | NR (39) | - 70 years of age <br> - Hypertensive ( $\mathrm{SBP} \geq 150 \mathrm{~mm} \mathrm{Hg}$ and/or DBP $\geq 90 \mathrm{~mm} \mathrm{Hg}$, measured twice in different days) or diagnosed with hypertension and currently receiving antihypertensive treatment <br> - Chinese | - Secondary hypertension <br> - Valvular heart disease <br> - Chronic kidney dysfunction <br> - Serum creatinine >=3.0 mg/dL <br> - Recent stroke or MI (previous 6 months) <br> - $\geq$ NYHA class III CHF or <br> - Echocardiography determining left ventricular ejection fraction (LVEF) $<40 \%$ <br> - Hepatic dysfunction <br> - Autoimmune disorders <br> - Malignant tumor <br> - Alzheimer’s disease | 724 | SBP/DBP <br> $\leq 140 / 90 \mathrm{~mm}$ <br> Hg <br> (363) | $\begin{aligned} & \text { SBP/DBP } \leq 150 / 90 \\ & \mathrm{~mm} \mathrm{Hg} \\ & (361) \end{aligned}$ |




Abbreviations: AASK: African American Study of Kidney Disease and Hypertension Trial; ABCD, Appropriate Blood Pressure Control in Diabetes Trial; ACCORD: Action to Control Cardiovascular Risk in Diabetes Trial; ACEI, angiotensin-converting-enzyme inhibitor, BP, blood pressure; CABG, Coronary artery bypass graft; CAD, coronary artery disease; CardioSis, Studio Italiano Sugli Effetti CARDIOvascolari del Controllo della Pressione Arteriosa SIStolica; CCB, calcium channel blocker; CHF, congestive heart failure; CKD, Chronic kidney disease; CV, cardiovascular; CVA, cerebral vascular accident; CVD, cardiovascular disease; DBP, diastolic blood pressure; DM, diabetes mellitus; GFR, Glomerular Filtration Rate; HALT-PDK, Halt Progression of Polycystic Kidney Disease Study; HbA1c, Glycated hemoglobin level; HDL-C, density lipoprotein cholesterol; HOME-BP, Hypertension Objective Treatment Based on Measurement by Electrical Devices of Blood Pressure; HOT, Hypertension Optimal Treatment Study; JATOS, Japanese Trial to Assess Optimal Systolic Blood Pressure in Elderly Hypertensive Patients; LDL-C, low density lipoprotein cholesterol; MAP, mean arterial pressure; MDRD, Modification of Diet in Renal Disease Trial; MI, myocardial infarction; NR, Study name Not Reported; NYHA, New York Heart Association; NSAID, non-steroidal anti-inflammatory drug; PAD, peripheral artery disease; REIN-2, Rampiril Efficacy in Nephropathy-2; SBP, systolic blood pressure; SPRINT, Systolic Blood Pressure Intervetion Trial; TIA, transient ischemic attack; UKPDS, United Kingdom Prospective Diabetes Study; VALISH, Valsartan in Elderly Isolated Systolic Hypertension Study; WHO, World Health Organization.

Table 2.5. Table of study characteristics at baseline.

| Study Acronym | Study N | Mean followup (y) | $\begin{aligned} & \text { Mean Age } \\ & \text { (SD), y } \end{aligned}$ | \% Male | \% White | Mean Blood Pressure |  | Comorbid conditions, \% |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Systolic, mm Hg (SD) | Diastolic, mm Hg (SD) | HTN | DM | CKD | $\begin{aligned} & \text { Prior } \\ & \text { CAD } \end{aligned}$ | CVD |
| Blood pressure target: systolic blood pressure (SBP) |  |  |  |  |  |  |  |  |  |  |  |  |
| ACCORD ${ }^{(29)(28)}$ | 4733 | 4.7 | 62.2 (6.9) | 52.3 | 60.5 | 139.2 (15.8) | 76.0 (10.4) | NR | 100 | NR | NR | $33.7^{\text {b }}$ |
| SPRINT ${ }^{(30)}$ | 9361 | $3.3{ }^{\text {a }}$ | $\begin{aligned} & 67.9(9.4)^{\mathrm{c}} \\ & 67.9(9.5)^{\mathrm{d}} \end{aligned}$ | $64.4{ }^{\text {b }}$ | $57.7^{\text {b }}$ | $\begin{aligned} & 139.7(15.8)^{\mathrm{c}} \\ & 139.7(15.4)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 78.2(11.9)^{\mathrm{c}} \\ & 78.0(12.0)^{\mathrm{d}} \end{aligned}$ | NR | 0 | $28.2^{\text {b }}$ | NR | $20.1{ }^{\text {b }}$ |
| Cardio-Sis ${ }^{(31)(48)}$ | 1111 | $2.0{ }^{\text {a }}$ | 67.0 (7.0) | $41.4{ }^{\text {b }}$ | NR | $\begin{aligned} & 163.3(11.1)^{\mathrm{c}} \\ & 163.3(11.1)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 89.7(8.8)^{\mathrm{c}} \\ & 89.6(8.8)^{\mathrm{d}} \end{aligned}$ | 100 | 0 | NR | $11.5^{\text {b }}$ | $19.4{ }^{\text {b }}$ |
| SPS3 ${ }^{(32)}{ }^{(49)}$ | 3020 | 3.7 | 63.0 (11) | 63.0 | $50.9{ }^{\text {b }}$ | $\begin{aligned} & 144(19)^{\mathrm{c}} \\ & 142(19)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 79(11)^{\mathrm{c}} \\ & 78(10)^{\mathrm{d}} \end{aligned}$ | 75.0 | $36.6{ }^{\text {b }}$ | NR | $10.5{ }^{\text {b }}$ | NR |
| VALISH ${ }^{(33,50)}$ | 3079 | 2.9 | 76.1 (NR) | 37.5 | 0 | $\begin{aligned} & 169.5(7.9)^{\mathrm{c}} \\ & 169.6(7.9)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 81.7(6.6)^{\mathrm{c}} \\ & 81.2(6.8)^{\mathrm{d}} \end{aligned}$ | 100 | $13.0{ }^{\text {b }}$ | NR | $5.0{ }^{\text {b }}$ | NR |
| JATOS ${ }^{(34,35)}$ | 4418 | NR | $\begin{aligned} & 73.6(5.3)^{c} \\ & 73.6(5.2)^{d} \end{aligned}$ | $38.9^{\text {b }}$ | 0 | $\begin{aligned} & 171.6(9.7)^{\mathrm{c}} \\ & 171.5(9.8)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 89.1(9.5)^{\mathrm{c}} \\ & 89.1(9.5)^{\mathrm{d}} \end{aligned}$ | 100 | $11.8{ }^{\text {b }}$ | 0 | NR | $3.0{ }^{\text {b }}$ |
| Blood pressure target: Systolic blood pressure/diastolic blood pressure (SBP/DBP) |  |  |  |  |  |  |  |  |  |  |  |  |


| HALT-PKD ${ }^{(36)(51)}$ | 558 | 5.7 | $\begin{aligned} & 36.9(8.2)^{\mathrm{c}} \\ & 36.3(8.4)^{\mathrm{d}} \end{aligned}$ | $50.7^{\text {b }}$ | $92.7^{\text {b }}$ | $\begin{aligned} & 121.8(13.8)^{\mathrm{c}} \\ & 122.6(14.9)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 77.1(11.7)^{\mathrm{c}} \\ & 78.1(11.7)^{\mathrm{d}} \end{aligned}$ | 100 | NR | NR | NR | NR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HOMED-BP ${ }^{(37)}{ }^{(52)}$ | 3518 | $5.3{ }^{\text {a }}$ | $\begin{aligned} & 59.6(10.2)^{\mathrm{c}} \\ & 59.6(9.9)^{\mathrm{d}} \end{aligned}$ | 50.0 | 0 | $\begin{aligned} & 154.3(17.5)^{\mathrm{c}} \\ & 154.1(17.5)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 90.4(12.2)^{\mathrm{c}} \\ & 90.0(12.1)^{\mathrm{d}} \end{aligned}$ | 100 | $15.3^{\text {b }}$ | NR | NR | $3.0^{\text {b }}$ |
| REIN-2 ${ }^{(38)}$ | 338 | $1.6{ }^{\text {a }}$ | $\begin{aligned} & 54.6(14.7)^{\mathrm{c}} \\ & 53.1(15.8)^{\mathrm{d}} \end{aligned}$ | $75.0^{\text {b }}$ | NR | $\begin{aligned} & 137.0(16.7)^{\mathrm{c}} \\ & 136.4(17.0)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 84.3(9.0)^{\mathrm{c}} \\ & 83.9(10.4)^{\mathrm{d}} \end{aligned}$ | NR | 0 | 100 | NR | NR |
| NR ${ }^{(39)}$ | 724 | 4.0 | 76.6 (NR) | $66.3^{\text {b }}$ | 0 | $\begin{aligned} & 158.8(16.0)^{\mathrm{c}} \\ & 160.3(16.9)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 83.7(9.6)^{\mathrm{c}} \\ & 84.8(9.5)^{\mathrm{d}} \end{aligned}$ | 100 | 23.0 | 0 | NR | NR |
| UKPDS ${ }^{(40)}{ }^{(53)}$ | 1148 | $8.4{ }^{\text {a }}$ | 56.4 (8.1) | $55.5^{\text {b }}$ | $86.7^{\text {b }}$ | $\begin{aligned} & 159(20.0)^{\mathrm{c}} \\ & 160(18.0)^{\mathrm{d}} \\ & \hline \end{aligned}$ | $\begin{aligned} & 94.0(10.0)^{\mathrm{c}} \\ & 94.0(9.0)^{\mathrm{d}} \end{aligned}$ | 100 | 100 | NR | NR | NR |
| Blood pressure target: diastolic blood pressure (DBP) |  |  |  |  |  |  |  |  |  |  |  |  |
| ABCD- Hypertensive cohort ${ }^{(43)}$ (41) | 470 | 5.3 | $\begin{aligned} & 58.0(8.4)^{\mathrm{c}} \\ & 57.7(8.3)^{\mathrm{d}} \\ & \hline \end{aligned}$ | $67.4^{\text {b }}$ | NR | $\begin{aligned} & 156(16.1)^{\mathrm{c}} \\ & 154(16.9)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 98(6.4)^{\mathrm{c}} \\ & 98(6.4)^{\mathrm{d}} \\ & \hline \end{aligned}$ | 100 | 100 | NR | NR | $22.6{ }^{\text {b }}$ |
| ABCD - <br> Normotensive cohort <br> $(41,43)(42)$ | 480 | 5.3 | $\begin{aligned} & 58.5(0.6)^{\mathrm{c}} \\ & 59.6(0.5)^{\mathrm{d}} \end{aligned}$ | $54.6{ }^{\text {b }}$ | $73.5{ }^{\text {b }}$ | $\begin{aligned} & 135.6(0.8)^{\mathrm{c}} \\ & 137.2(0.9)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 84.4(0.2)^{\mathrm{c}} \\ & 84.4(0.2)^{\mathrm{d}} \end{aligned}$ | 0 | 100 | NR | $24.2^{\text {b }}$ | NR |
| HOT ${ }^{(44)}$ | 18790 | 3.8 | 61.5 (NR) | 53.0 | NR | $\begin{aligned} & 169.7(14.1)^{\mathrm{c}} \\ & 169.8(14.4)^{\mathrm{d}} \end{aligned}$ | 105.4 (3.4) ${ }^{\text {c,d }}$ | 100 | 8.0 | NR | $6.0^{\text {b }}$ | NR |
| Blood pressure target: Mean Arterial Pressure (MAP) |  |  |  |  |  |  |  |  |  |  |  |  |
| AASK ${ }^{45}(54)(46,55)(56)$ | 1094 | 4.1 | 55.0 (11.0) | 61.0 | 0 | $\begin{aligned} & 152(25)^{\mathrm{c}} \\ & 149(23)^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 96(15)^{\mathrm{c}} \\ & 95(14)^{\mathrm{d}} \end{aligned}$ | 100 | 0 | 100 | $52.0^{\text {b }}$ | NR |
| MDRD ${ }^{29}$ (47) | 840 | 6.2 | 52.0 | 61.0 | NR | 130 (16) ${ }^{\text {c }}$ | 131 (18) ${ }^{\text {c }}$ | NR | 5.0 | 100 | NR | NR |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.
a. Median value
b. Total population data calculated from BP target group data.
c. Intensive [lower] target blood pressure group
d. Standard [higher] target blood pressure group.
Abbreviations: CAD, coronary artery disease; CKD, chronic kidney disease; CVD, cardiovascular disease; DM, diabetes mellitus; HTN, hypertension; NR, not reported.

Table 2.6. Comparison of protocols across studies (Part 2 -Targets for blood pressure lowering).

| Study <br> Acronym | Blood Pressure <br> Measurement | Frequency of contact during follow up (monitoring and/or changes in antihypertensive medication treatment) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Intensive BP Goal [lower BP target] | Standard BP Goal [higher BP target] | Notes on medication management |
| Blood pressure target: systolic blood pressure (SBP) |  |  |  |  |
| $\underset{\text { 29) }}{ } \mathrm{ACCORD}^{(28,}$ |  | BP and glycemic treatments begin at randomization <br> At least monthly visits until month 4 and achieving BP goal then every 2 months. <br> "Milepost" visits at 4-month intervals for 2 years then annually. <br> Action required at each milepost for participants who remain above SBP goal of $<120 \mathrm{mmHg}$. <br> Between designated visits, therapy may be intensified for those not at goal. | BP and glycemic treatments begin at randomization <br> Clinical visits months 1,4 , and every 4 months thereafter. <br> Medication dose titration or the addition of another drug is indicated if systolic blood pressure is $\geq 160 \mathrm{~mm} \mathrm{Hg}$ at a single visit or $\geq 140 \mathrm{~mm} \mathrm{Hg}$ at 2 successive visits Down titration permitted if SBP $<135$ mmHg at 2 successive clinic visits or $<130 \mathrm{mmHg}$ at any single visit | Medication doses may be decreased or changed whenever an ACCORD therapist considers it clinically indicated, such as when symptoms are reported that could be secondary to an antihypertensive medication |
| SPRINT ${ }^{(30)}$ | Seated BP measured at each clinic visit using an automated measurement system (Model 907, Omron Healthcare) | Post-randomization visits at months 1,2 , 3,6 , and every 3 months thereafter 2 or 3 drug therapy using a combination of thiazide-type diuretic, and/or an ACEI, or ARB (but not both) and/or a CCB initiated at randomization (an ACE inhibitor or ARB plus a CCB initiated if diuretic contraindicated or not tolerated) Drug doses increased and/or additional antihypertensive medications added at each visit (usually monthly intervals) until participant's SBP goal of <120 mmHg had been reached or the investigator decided no further antihypertensive medications may be added | Post-randomization visits at months 1,2, 3 , 6, and every 3 months thereafter Participants may not be on $\geq 1$ antihypertensive medications Use of thiazide-type diuretic initially if antihypertensive medication indicated Treatment should not be intensified at the randomization visit unless $\mathrm{SBP} \geq 160 \mathrm{~mm}$ Hg or there was a compelling reason to add medication Medications were adjusted to target SBP of 135-139 mmHg, and dose reduced if SBP was $<130 \mathrm{mmHg}$ on a single visit or $<135 \mathrm{mmHg}$ on two consecutive visits | Study physician may add, increase or reduce the dose, stop, or change antihypertensive drugs (temporarily or permanently) in the interest of participant safety |
| $\underset{(31)}{\text { Cardio-Sis }}$ | Seated BP through standard mercury sphygmomanometer | After randomization, visits every 4 months for 2 years <br> Anti-hypertensive therapy was open-label and tailored to the single subjects One or more SBP $>130 \mathrm{mmHg}$ is enough to intensify treatment | After randomization, visits every 4 months for 2 years Anti-hypertensive therapy was open-label and tailored to the single subjects |  |


|  |  |  | Achievement of SBP goal of $<130 \mathrm{mmHg}$ does not imply down titration of treatment |  |
| :---: | :---: | :---: | :---: | :---: |
| SPS3 ${ }^{(32)}$ | Automated Colin PressMate BP-8800C sphygmomanometers (Colin Medical Instruments, San Antonio, TX, USA) | Patients are seen at least monthly for adjustment of antihypertensive medications to achieve the assigned target blood pressure. Once the systolic blood pressure is in the assigned target range at two consecutive visits, the participant continues with quarterly follow-ups. | Same as intensive group |  |
| VALISH | Seated BP | Visits every 3 months at a minimum for 2 years <br> Valsartan, 40 to 80 mg once daily, administrated as first-step therapy. If target BP in each group was not achieved within 1 to 2 months, the dose of valsartan was increased $\leq 160 \mathrm{mg}$, and/or other antihypertensive agents except other angiotensin II type 1 receptor blockers were added (e.g. low-dose diuretics, Ca antagonists, and so on) to maintain the target BP <br> Target BP level reached over 3 months | Same as intensive group | Not described |
| JATOS ${ }^{(34)(35)}$ | Seated BP measured at least twice per visit using a sphygmomanometer | Untreated subjects - received daily 20-40 mg dose efonidipine <br> Treated subjects - similar dose of efonidipine was added or substituted for one of the drugs being received before study entry without a washout period, efondipine could be increased to 60 mg (once or twice daily). <br> Visits with physician every 2 or 4 weeks Investigators titrated doses of antihypertensive drugs in order to reach target BP by about 3 months after start of treatment. | Same as intensive group |  |
| Blood pressure target: Systolic blood pressure/diastolic blood pressure (SBP/DBP) |  |  |  |  |
| $\underset{(36,51)}{\text { HALT-PKD }}$ | Office BP measured three times sitting and once while standing; <br> Home BP measurements obtained every 3 days until | Treatment initiated after randomization Medication doses were adjusted in a stepwise fashion to achieve the desired BP targets (with the use of home BP | Same as intensive group |  |


|  | BP targets achieved (based on home BP measurements twice daily for 14 days) | measures) while the plasma levels of creatinine and potassium were monitored. Second-, third-, and fourth-line antihypertensive agents were added as needed <br> Patients evaluated through PCC and telephone visits |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\underset{(37)(52)}{\mathrm{HOMED}}$ | Seated BP measured twice using the oscillometric OMRON HEM-907IT device (OmronHealthcare, Kyoto,Japan) <br> Participants self-measured sitting BP daily throughout study using the oscillometric OMRON HEM-747IC-N monitors(OmronHealthcare) | After randomization, participants were followed at intervals of $2-4$ wks in general practice and 4-8 wks at hospital outpatient clinics <br> Home BP was used to determine treatment adjustments Advice for treatment adjustment was based on computerized algorithm following 1997 recommendations of the JNC, and 1999 WHO and ISH guidelines -4 steps including changing dosage or addition of medications | Same as intensive group | When the Home BP was $<110 \mathrm{mmHg}$ systolic or 65 mmHg diastolic, treatment was tailored down to avoid orthostatic hypotension |
| REIN-2 ${ }^{(38)}$ | Seated resting BP measured 3 times, 2 minutes apart by a standard sphygmomanometer | After randomization, BP was measured at 1 wk, 2 wks, 3 mos, and every 3 mos thereafter. Additional BP measurements done within 1 wk after any change in antihypertensive therapy and whenever deemed clinically appropriate. After baseline evaluation, participants given Ramipril $2.5 \mathrm{mg} / \mathrm{d}$ after previous diurectic therapy withdrawn for 24 hours. Up-titrated to $5 \mathrm{mg} / \mathrm{d}$ concomitant antihypertensive therapy was downtitrated to maintain DBP at $<90 \mathrm{~mm} \mathrm{Hg}$ Felodipine 5 mg /day as an add-on to previous treatment with ramipril and concomitant BP response. | After randomization, BP was measured at $1 \mathrm{wk}, 2 \mathrm{wks}, 3$ mos, and every 3 mos thereafter. Additional BP measurements done within 1 wk after any change in antihypertensive therapy and whenever deemed clinically appropriate. After baseline evaluation, participants given Ramipril $2.5 \mathrm{mg} / \mathrm{d}$ after previous diurectic therapy withdrawn for 24 hours. Up-titrated to $5 \mathrm{mg} / \mathrm{d}$ concomitant antihypertensive therapy was downtitrated to maintain DBP at $<90 \mathrm{~mm} \mathrm{Hg}$ Continued treatment with ramipril and concomitant antihypertensive drugs. | Up- and down-titration of treatments permitted to maintain the target BP and to avoid symptomatic hypotension |
| NR (Wei et al) ${ }^{(39)}$ | Sitting BP measured by auscultatory method using a sphygmomanometer | BP was measured in the follow-up period at $4 \mathrm{wks}, 3$ mos, 6 ms , and every 6 ms thereafter (all patients followed an average of 10 times) Randomized patients were started with single-drug treatment of an ACE-I, BB, CCB, or a diuretic | Same as intensive group |  |


|  |  | To achieve the target BP, 1,2 , or 3 additional antihypertensive drugs could be added stepwise. <br> If quadruple antihypertensive therapy failed to achieve BP goal, increasing dose was recommended |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{(53)} \text { UKPDS }^{(40)}$ | Seated office BP measurement, Copal UA251 or a Takeda UA-751 electronic, automatic, auscultatory BP reading machine (Andrew Stephens Co., Brighouse, West Yorkshire, UK) | therapy was usually started with captopri125 mg twice daily or atenolo150 mg once daily (diuretic, stopped at least 24 h before captopril was introduced at a dose of 6.25 rag ) <br> The first dose being given in hospital with a 6-h observation period. If BP remained $\geq 150 \mathrm{and} /$ or $\geq 85 \mathrm{~mm} \mathrm{Hg}$ on a single reading, the dose was increased to the maximum of atenolol 100 mg daily or captopril 50 mg twice daily Other drugs (frusemide, long-acting nifedipine, methyldopa, prazosin) added in sequence until the target BP control criteria were met. | At randomization, if a patient was already being treated with an ACE-I or a BB, this was stopped if feasible. <br> If the BP remained at or became $\geq 200$ and/or $\geq 105 \mathrm{mmHg}$, other drugs (frusemide, nifedipine, methyldopa, prazosin) were given sequentially, until the target control criteria were met. If possible, ACE-I and BB were not used. | If symptoms occurred on any drug, physicians could use their clinical judgement on choice of therapies |
| Blood pressure target: diastolic blood pressure (DBP) |  |  |  |  |
| ABCD ${ }^{(41,43)}$ | Mean DBP determined at 2 separate visits | Participants randomized to initial antihypertensive medication (nisoldipine $10 \mathrm{mg} / \mathrm{d}$ titrated to 20,40 , then $60 \mathrm{mg} / \mathrm{d}$ or enalapril titrated to 10,20 , then 40 $\mathrm{mg} / \mathrm{d}$ ) plus placebo. <br> If single study medication did not achieve target BP, then ope-label antihypertensive medications were added in step-wise fashion until target BP achieved. | Same as intensive group | Additional antihypertensive medications added at discretion of medical director but did not include CCB or ACEI. |
| $\mathrm{HOT}^{(44)}$ | Seated resting BP, measured three times with an oscillometric semiautomatic device (Visomat OZ, D2, International, Hestia, Germany) at randomization, 3 mos, 6 mos, and twice a year thereafter. | Antihypertensive therapy, with the longacting CCB (felodipine, 5 mg once a day) Additional therapy and dose increments in four further steps were prescribed to reach target BP . <br> Step two: ACE-I or BB were added Step three: dosage titrations (felodipine 10 mg once a day) Step four: (doubling the dose of either the ACE-I or the BB) Step five: adding a diuretic | Same as intensive group |  |

## Blood pressure target: Mean Arterial Pressure (MAP)

| AASK (45, 56) |
| :--- |
| Seated resting BP measured <br> 3 times using Hawksley <br> random zero <br> sphygmomanometer Treatment with 1 of 3 antihypertenstive <br> study drugs - sustained release BB <br> (metoprolol 50 to 200 mg/d), ACE-I <br> (ramapril, 2.5 to 10 mg/d), CCB <br> (amlodipine, 5 to 10 mg/d) <br> If target BP not achieved on study drug, <br> additional unmasked drugs added. <br> The dosage of each drug was increased to <br> maximum tolerated dose before adding a <br> subsequent agent. Same as intensive group.  <br> MDRD ${ }^{(47)}$ BP measured monthly using <br> random-zero mercury <br> sphygmomanometer After randomization, Nonpharmacologic <br> therapy consisted of recommendations for <br> exercise and weight loss and reductions in <br> intake of dietary sodium and alcohol <br> For pharmacologic therapy, use of all <br> agents was allowed, to achieve BP goals. <br> ACEI and CCB, both with or without <br> diuretic, were encouraged as first choice <br> and second choice agents respectively.  |
| Abbreviations: ACE-I, angiotensin-converting enzyme inhibitor; BB, beta blocker; BP, blood pressure; CCB, calcium channel blocker; ISH, International Society of Hypertension; JNC, Joint National group. |

Abbreviations: ACE-I, angiotensin-converting enzyme inhibitor; BB, beta blocker; BP, blood pressure; CCB, calcium channel blocker; ISH, International Society of Hypertension; JNC, Joint National Committee; PCC, participating clinical center; WHO, World Health Organization.

Table 2.7. Relative Risk (95\% Confidence Interval) for a Given Outcome for any Intensive [Lower] Blood Pressure Target Versus any Standard [Higher] Blood Pressure Target.

| Outcome | Studies included, N | Study participants included, $\mathbf{N}$ | Events, N (\%) |  | RR | (95\% CI) | Heterogeneity |  | Funnel Plot Asymmetry |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Intensive BP target | Standard BP target |  |  | $\mathrm{I}^{\mathbf{2}} \mathbf{( \% )}$ | $P$-value | P-value for Kendall's Tau | $P$-value for <br> Egger's Regression Test |
| All-cause mortality | 15 | 49,934 | 952 (4.0) | 1,001 (4.3) | 0.89 | (0.77, 1.02) | 49.30 | 0.02 | 0.24 | 0.50 |
| CVD mortality | 10 | 40,266 | 268 (1.3) | 504 (2.5) | 0.86 | (0.67, 1.12) | 46.44 | 0.06 | 0.38 | 0.38 |
| Major Cardiovascular Disease Events | $7^{\text {a }}$ | 23,617 | 682 (5.8) | 828 (7.0) | 0.81 | (0.70, 0.94) | 41.34 | 0.12 | 0.56 | 0.55 |
| Fatal or non-fatal myocardial infarction | 11 | 31,926 | 415 (2.6) | 419 (2.7) | 0.86 | $(0.76,0.99)$ | 0.00 | 0.99 | 0.76 | 0.28 |
| Fatal or non-fatal stroke | 12 | 33,018 | 389 (2.3) | 475 (2.9) | 0.77 | $(0.65,0.91)$ | 26.43 | 0.18 | 0.74 | 0.41 |
| Fatal or non-fatal heart failure | 8 | 23,066 | 222 (1.9) | 278 (2.4) | 0.75 | $(0.56,0.99)$ | 49.12 | 0.06 | 0.55 | 0.72 |
| Renal Events | $8^{\text {b }}$ | 18,286 | 334 (3.8) | 353 (4.2) | 1.01 | $(0.89,1.15)$ | 0.00 | 0.80 | 1.00 | 0.68 |

Note: Detailed information about studies included for each specific outcome may be found in Tables 2.9-2.15.
a. Major cardiovascular disease events were included in the analysis only if defined and reported as a composite outcome by each trial, it included cardiovascular death, stroke, myocardial infarction, and heart failure.
b. Renal events include the following: doubling of serum creatinine, end stage renal disease, a decline in glomerular filtration rates $>50 \%$ or $25 \mathrm{~mL} / \mathrm{min}$ per $1.73 \mathrm{~m} \wedge 2$ reduction in GFR from baseline, progression of chronic kidney disease (CKD), renal failure, renal failure in absence of acute reversible cause.

Table 2.8. Relative Risk (95\% Confidence Interval) for a Given Outcome for Intensive [Lower] Blood Pressure Target <130 mm Hg Systolic Versus any Standard [Higher] Blood Pressure Target

| Outcome | Studies included, N | Study participants included, $\mathbf{N}$ | Events, N (\%) |  | RR | (95\% CI) | Heterogeneity |  | Funnel Plot Asymmetry |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Intensive BP target | Standard BP target |  |  | $\mathrm{I}^{\mathbf{2}} \mathbf{( \% )}$ | $P$-value | P-value for Kendall's Tau | P-value for <br> Egger's <br> Regression <br> Test |
| All-cause mortality | $9^{\text {a }}$ | 24,569 | 493 (4.0) | 546 (4.4) | 0.92 | (0.79, 1.06) | 15.59 | 0.30 | 0.12 | 0.91 |
| CVD mortality | $5^{\text {b }}$ | 19,039 | 117 (1.2) | 145 (1.5) | 0.81 | $(0.58,1.14)$ | 31.42 | 0.21 | 0.82 | 0.79 |
| Major Cardiovascular Disease Events | $5^{\text {a }}$ | 19,814 | 610 (6.2) | 724 (7.3) | 0.84 | $(0.73,0.99)$ | 40.70 | 0.15 | 0.82 | 0.82 |
| Fatal or non-fatal myocardial infarction | 6 | 22,077 | 269 (2.4) | 316 (2.9) | 0.85 | $(0.73,1.00)$ | 0.00 | 0.99 | 0.47 | 0.45 |
| Fatal or non-fatal stroke | 7 | 23,169 | 274 (2.4) | 339 (2.9) | 0.82 | (0.70, 0.96) | 0.00 | 0.45 | 1.00 | 0.90 |
| Fatal or non-fatal heart failure | 4 | 16,296 | 175 (2.2) | 220 (2.7) | 0.81 | $(0.58,1.14)$ | 53.42 | 0.09 | 1.00 | 0.92 |
| Renal Events | $5^{\text {b }}$ | 9,641 | 347 (7.4) | 346 (7.0) | 1.01 | $(0.89,1.16)$ | 0.00 | 0.99 | 1.00 | 0.48 |

Note: Detailed information about studies included for each specific outcome may be found in Tables 2.9-2.15.
a. Major cardiovascular disease events were included in the analysis only if defined and reported as a composite outcome by each trial, it included cardiovascular death, stroke, myocardial infarction, and heart failure.
b. Renal events include the following: doubling of serum creatinine, end stage renal disease, a decline in glomerular filtration rates $>50 \%$ or $25 \mathrm{~mL} / \mathrm{min} \mathrm{per} 1.73$ $\mathrm{m} \wedge 2$ reduction in GFR from baseline, progression of chronic kidney disease (CKD), renal failure, renal failure in absence of acute reversible cause.

Table 2.9. Relative risk of all-cause mortality in the intensive [lower] versus the standard [higher] blood pressure group.

| Comparison Groups Intensive (lower) vs standard (higher) BP target | Study | Author, Journal (Year) | N | Events, N (\%) |  | RR (95\% CI) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Intensive BP target | Standard BP target |  |
| SBP Target (mm Hg) |  |  |  |  |  |  |
| $<120$ vs <140 | ACCORD ${ }^{(28)}$ | Cushman WC, N Engl J Med (2010) | 4,733 | 150 (6.4) | 144 (6.1) | 1.05 (0.84, 1.30) |
| $<120$ vs <140 | SPRINT ${ }^{(30)}$ | Wright JT, NEJM (2015) | 9,361 | 155 (3.3) | 210 (4.5) | 0.74 (0.60, 0.91) |
| $<130$ vs <140 | Cardio-Sis (31) | Verdecchia P, Lancet (2009) | 1,111 | 4 (0.7) | 5 (0.9) | 0.79 (0.21, 2.94) |
| $<130$ vs 130-149 | SPS3 ${ }^{(32)}$ | Benavente, Lancet (2013) | 3,020 | 106 (7.1) | 101 (6.6) | 1.06 (0.82, 1.38) |
| $<140$ vs $\geq 140$ to $<150$ | VALISH ${ }^{(33)}$ | Ogihara T, Hypertension (2010) | 3,260 | 24 (1.6) | 30 (2.0) | 0.79 (0.47, 1.35) |
| $<140$ vs $\geq 140$ to $<160$ | JATOS ${ }^{(35)}$ | JATOS, Hypertens Res (2008) | 4,418 | 54 (2.4) | 42 (1.9) | 1.28 (0.86, 1.91) |
| SBP/DBP Target (mm Hg) |  |  |  |  |  |  |
| 95/60-110/75 vs 120/70-130/80 | HALT-PKD ${ }^{(36)}$ | Schrier RW, NEJM (2014) | 480 | 0 (0.0) | 2 (0.7) | 0.21 (0.01, 4.30) |
| $<125 /<80$ vs $125-134 / 80-84$ | HOMED-BP ${ }^{(37)}$ | Asayama K, Hypertens Res (2012) | 3,518 | 27 (1.5) | 31 (1.8) | 0.87 (0.52, 1.45) |
| $<130 / 80$ vs <90 | REIN-2 ${ }^{(38)}$ | Ruggenenti P, Lancet (2005) | 338 | 2 (1.2) | 3 (1.8) | 0.67 (0.11, 3.96) |
| $\leq 140 / 90$ vs $\leq 150 / 90$ | NR ${ }^{(39)}$ | Wei Y, J Clin Hypertens (2013) | 724 | 51 (14.0) | 87 (24.1) | 0.58 (0.43, 0.80) |
| $<150 / 85$ vs <180/105 | UKPDS ${ }^{(40)}$ | UKPDS Group, BMJ (1998) | 1,148 | 134 (17.7) | 83 (21.3) | 0.83 (0.65, 1.06) |
| DBP Target (mm Hg) |  |  |  |  |  |  |
| 75 vs 80-89 | ABCD ${ }^{(41)}$ | Estacio RO, Diabetes Care (2000) | 470 | 13 (5.5) | 25 (10.7) | 0.51 (0.27, 0.97) |
| $\leq 80 \mathrm{Hg}$ vs $\leq 90$ | HOT ${ }^{(44)}$ | Hansson L, Lancet (1998) | 12,528 | 207 (3.3) | 188 (3.0) | 1.10 (0.91, 1.34) |
| MAP Target (mm Hg) |  |  |  |  |  |  |
| $\leq 92$ vs 102-107 | AASK ${ }^{(45)}$ | Wright JT Jr., JAMA (2002) | 1,094 | 37 (6.9) | 43 (7.8) | 0.88 (0.58, 1.35) |
| $\begin{aligned} & \leq 92 \text { vs }<107(\text { age } \leq 60 \text { y) or } \\ & <98 \text { vs }<113(\text { age } \geq 61 \mathrm{y}) \end{aligned}$ | MDRD ${ }^{(47)}$ | Sarnak MJ, Ann Intern Med (2005) | 840 | 12 (2.8) | 7 (1.7) | 1.60 (1.00, 2.55) |
| Meta-analyses | $\mathrm{I}^{\mathbf{2}}$ (\%) | Q Test for Heterogeneity |  |  |  | RR (95\% CI) |
| Any SBP target ( $\mathrm{n}=6$ ) | 49.21 | $\mathrm{Q}(\mathrm{df}=5)=9.84, P=0.08$ | 25,721 | 493 (3.8) | 532 (4.1) | 0.95 (0.79, 1.15) |
| Any SBP/DBP target ( $\mathrm{n}=5$ ) | 3.77 | $\mathrm{Q}(\mathrm{df}=4)=4.16, P=0.39$ | 6,283 | 212 (6.7) | 203 (7.3) | 0.74 (0.61, 0.89) |
| Intensive SBP target <130 ( $\mathrm{n}=9)^{\text {a }}$ | 15.59 | $\mathrm{Q}(\mathrm{df}=8)=9.48, P=0.30$ | 24,569 | 493 (4.0) | 546 (4.4) | 0.92 (0.79, 1.06) |
| All studies ( $\mathrm{n}=15$ ) | 49.30 | $\mathrm{Q}(\mathrm{df}=14)=27.61, P=0.02$ | 46,934 | 952 (4.0) | 1,001 (4.3) | 0.89 (0.77, 1.02) |
| Sensitivity analyses |  |  |  |  |  |  |
| 100\% Diabetic populations ( $\mathrm{n}=3$ ) ${ }^{\text {b }}$ | 60.87 | $\mathrm{Q}(\mathrm{df}=2)=5.11, P=0.08$ | 6351 | 297 (8.8) | 252 (3.7) | 0.85 (0.64, 1.14) |
| 100\% CKD populations ( $\mathrm{n}=3)^{\text {c }}$ | 0.00 | $\mathrm{Q}(\mathrm{df}=2)=1.54, P=0.46$ | 2269 | 51 (4.5) | 53 (4.7) | 0.96 (0.66, 1.40) |
| Study populations with mean age $\geq 60 \mathrm{y}(\mathrm{n}=8)^{\mathrm{d}}$ | 67.11 | $\mathrm{Q}(\mathrm{df}=7)=21.28, P=0.003$ | 38,971 | 751 (3.9) | 807 (4.1) | 0.92 (0.76, 1.11) |

Note: This table lists studies which fit inclusion criteria and identified all cause mortality as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1) only patients with diabetes, 2 ) only patients with CKD, or 3 ) a study population with mean age $\geq 60$ years at baseline.
Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5.
a. ACCORD, SPRINT, Cardio-Sys, SPS3, HALT-PDK, HOMED-BP, REIN-2, AASK, and MDRD.
b. ACCORD, UKPDS, ABCD.
c. REIN-2, AASK, and MDRD.
d. ACCORD, SPRINT, Cardio-Sis, SPS3, VALISH, JATOS, Wei et al, and HOT.

Table 2.10. Relative risk of cardiovascular disease mortality in the intensive [lower] versus the standard [higher] blood pressure group.

| Comparison Groups Intensive (lower) vs standard (higher) BP target | Study | Author, Journal (Year) | N | Events, N (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Intensive BP target | Standard BP target | RR (95\% CI) |
| SBP Target (mm Hg) |  |  |  |  |  |  |
| $<120$ vs <140 | ACCORD ${ }^{(28)}$ | Cushman WC, N Engl J Med (2010) | 4,733 | 60 (2.5) | 58 (2.4) | 1.04 (0.73, 1.48) |
| $<120$ vs $<140$ | SPRINT ${ }^{(30)}$ | Wright JT, NEJM (2015) | 9,361 | 37 (0.8) | 65 (1.4) | 0.57 (0.38, 0.85) |
| $<140$ vs $\geq 140$ to $<150$ | VALISH ${ }^{(33)}$ | Ogihara T, Hypertension (2010) | 3,260 | 11 (0.7) | 11 (0.7) | 0.99 (0.43, 2.28) |
| $<140$ vs $\geq 140$ to $<160$ | JATOS ${ }^{(35)}$ | JATOS, Hypertens Res (2008) | 4,418 | 6 (0.3) | 4 (0.2) | 1.50 (0.42, 5.29) |
| SBP/DBP Target (mm Hg) |  |  |  |  |  |  |
| $<125 /<80$ vs $125-134 / 80-84$ | HOMED-BP ${ }^{(37)}$ | Asayama K, Hypertens Res (2012) | 3,518 | 3 (0.2) | 5 (0.3) | 0.60 (0.14, 2.51) |
| $<130 / 80$ vs <90 | REIN-2 ${ }^{(38)}$ | Ruggenenti P, Lancet (2005) | 338 | 1 (0.6) | 2 (1.2) | 0.50 (0.05, 5.49) |
| $\leq 140 / 90$ vs $\leq 150 / 90$ | NR ${ }^{(39)}$ | Wei Y, J Clin Hypertens (2013) | 724 | 25 (6.9) | 50 (13.9) | 0.50 (0.31, 0.79) |
| DBP Target (mm Hg) |  |  |  |  |  |  |
| 75 vs 80-89 | ABCD ${ }^{(42)}$ | Schrier RW, Kidney Intl (2002) | 480 | 13 (5.4) | 9 (3.7) | 1.48 (0.65, 3.40) |
| $\leq 80$ vs $\leq 90$ | HOT ${ }^{(44)}$ | Hansson L, Lancet (1998) | 18,790 | 96 (1.5) | 90 (1.4) | 1.03 (0.77, 1.39) |
| MAP Target (mm Hg) |  |  |  |  |  |  |
| $\leq 92$ vs 102-107 | AASK ${ }^{(46)}$ | Norris K, Am J Kidney Dis (2006) | 1,094 | 16 (3.0) | 15 (2.7) | 1.09 (0.54, 2.18) |
| Meta-analyses | $\mathrm{I}^{\mathbf{2}}$ (\%) | Q Test for Heterogeneity |  |  |  | RR (95\% CI) |
| Any SBP Targets ( $\mathrm{n}=4$ ) | 49.14 | $\mathrm{Q}(\mathrm{df}=3)=5.90, P=0.12$ | 21,591 | 114 (1.1) | 138 (1.3) | 0.86 (0.57, 1.29) |
| Intensive SBP target $<130(\mathrm{n}=5)^{\text {a }}$ | 31.42 | $\mathrm{Q}(\mathrm{df}=4)=5.83, \mathrm{P}=0.21$ | 19,039 | 117 (1.2) | 145 (1.5) | $0.81(0.58,1.14)$ |
| All studies ( $\mathrm{n}=10$ ) | 46.44 | $\mathrm{Q}(\mathrm{df}=9)=16.17, P=0.06$ | 40,266 | 268 (1.3) | 504 (2.5) | 0.86 (0.67, 1.12) |
| Sensitivity analyses |  |  |  |  |  |  |
| 100\% Diabetic populations | -- | -- | -- | -- | -- | -- |
| 100\% CKD populations | -- | -- | -- | -- | -- | (0) |
| Study populations with mean age $\geq 60 \mathrm{y}(\mathrm{n}=6)^{\mathrm{b}}$ | 63.34 | $\mathrm{Q}(\mathrm{df}=5)=13.6370, P=0.02$ | 34,841 | 235 (1.4) | 278 (1.6) | 0.82 (0.59, 1.13) |

Note: This table lists studies which fit inclusion criteria and identified cardiovascular mortality as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1) only patients with diabetes, 2 ) only patients with CKD, or 3) a study population with mean age $\geq 60$ years at baseline. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5.
a. Includes ACCORD, SPRINT, HOMED-BP, REIN-2, and AASK.
b. Includes ACCORD, SPRINT, Cardio-Sis, SPS3, VALISH, JATOS, Wei et al, and HOT.

Table 2.11. Relative risk of major cardiovascular disease ${ }^{\mathrm{a}}$ event in the intensive [lower] versus the standard [higher] blood pressure group.

| Comparison Groups Intensive (lower) vs standard (higher) BP target | Study | Author, Journal (Year) | N | Events, N (\%) |  | RR (95\% CI) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Intensive <br> BP target | Standard BP target |  |
| SBP Target (mm Hg) |  |  |  |  |  |  |
| $<120$ vs <140 | ACCORD ${ }^{(28)}$ | Cushman WC, N Engl J Med (2010) | 4,733 | 253 (10.7) | 270 (11.4) | 0.94 (0.80, 1.11) |
| $<120$ vs <140 | SPRINT ${ }^{(30)}$ | Wright JT, NEJM (2015) | 9,361 | 243 (5.2) | 319 (6.8) | 0.76 (0.65, 0.90) |
| $<130$ vs <140 | Cardio-Sis ${ }^{(31)}$ | Verdecchia P, Lancet (2009) | 1,111 | 17 (3.0) | 32 (5.8) | 0.79 (0.21, 2.94) |
| $<140$ vs $\geq 140$ to $<150$ | VALISH ${ }^{(33)}$ | Ogihara T, Hypertension (2010) | 3,260 | 32 (2.1) | 37 (2.4) | 0.86 (0.54, 1.37) |
| SBP/DBP Target (mm Hg) |  |  |  |  |  |  |
| $<125 /<80$ vs 125-134/80-84 | HOMED-BP ${ }^{(37)}$ | Asayama K, Hypertens Res (2012) | 3,518 | 26 (1.5) | 25 (1.4) | 1.04 (0.60, 1.79) |
| $\leq 140 / 90$ vs $\leq 150 / 90$ | NR ${ }^{(39)}$ | Wei Y, J Clin Hypertens (2013) | 724 | 40 (11.0) | 67 (18.6) | 0.59 (0.41,0.85) |
| MAP Target (mm Hg) |  |  |  |  |  |  |
| $\leq 92$ vs 102-107 | AASK ${ }^{(46)}$ | Norris K, Am J Kidney Dis (2006) | 1,094 | 71 (13.1) | 78 (14.1) | 0.93 (0.69, 1.25) |
| Meta-analyses | $\mathrm{I}^{\mathbf{2}}$ (\%) | Q Test for Heterogeneity |  |  |  | RR (95\% CI) |
| Any SBP Target ( $\mathrm{n}=4$ ) | 47.76 | $\mathrm{Q}(\mathrm{df}=3)=5.74, P=0.12$ | 18,283 | 545 (6.0) | 658 (7.2) | 0.81 (0.68, 0.98) |
| Intensive SBP target $<130(\mathrm{n}=5)^{\text {b }}$ | 40.70 | $\mathrm{Q}(\mathrm{df}=4)=6.75, P=0.15$ | 19,814 | 610 (6.2) | 724 (7.3) | 0.85 (0.73, 0.99) |
| All studies ( $\mathrm{n}=7$ ) | 41.43 | $\mathrm{Q}(\mathrm{df}=6)=10.23, P=0.12$ | 23,617 | 682 (5.8) | 828 (7.0) | 0.81 (0.70, 0.94) |
| Sensitivity analyses |  |  |  |  |  |  |
| 100\% Diabetic populations (n=1) | -- | -- | -- | -- | -- | -- |
| 100\% CKD populations ( $\mathrm{n}=2$ ) | -- | -- | -- | -- | -- | -- |
| Study populations with mean age $\geq 60 \mathrm{y}(\mathrm{n}=5)^{\mathrm{c}}$ | 54.59 | $\mathrm{Q}(\mathrm{df}=4)=8.81, P=0.07$ | 19,007 | 585 (6.2) | 725 (7.6) | 0.77 (0.64, 0.93) |

Note: This table lists studies which fit inclusion criteria and identified major cardiovascular disease as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1 ) only patients with diabetes, 2 ) only patients with CKD, or 3 ) a study population with mean age $\geq 60$ years at baseline. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5 . a. Major cardiovascular disease events were included in the analysis only if defined and reported as a composite outcome by each trial, it included cardiovascular death, stroke, myocardial infarction, and heart failure.
b. Includes ACCORD, SPRINT, Cardio-Sis, HOMED-BP, and AASK.
c. Includes ACCORD, SPRINT, VALISH, JATOS, and Wei et al.

Table 2.12. Relative risk of fatal or non-fatal myocardial infarction in the intensive [lower] versus the standard [higher] blood pressure group.

| Comparison Groups Intensive (lower) vs standard (higher) BP target | Study | Author, Journal (Year) | N | Events, N (\%) |  | RR (95\% CI) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Intensive BP target | Standard BP target |  |
| SBP Target (mm Hg) |  |  |  |  |  |  |
| $<120$ vs <140 | ACCORD ${ }^{(28)}$ | Cushman WC, N Engl J Med (2010) | 4,733 | 126 (5.3) | 146 (6.2) | 0.87 (0.69, 1.09) |
| $<120$ vs <140 | SPRINT ${ }^{(30)}$ | Wright JT, NEJM (2015) | 9,361 | 97 (2.1) | 116 (2.5) | 0.84 (0.64, 1.09) |
| $<130$ vs <140 | Cardio-Sis ${ }^{(31)}$ | Verdecchia P, Lancet (2009) | 1,110 | 4 (0.7) | 6 (1.1) | 0.66 (0.19, 2.33) |
| $<130$ vs <140 | SPS3 ${ }^{(32)}$ | Benavente, Lancet (2013) | 3,020 | 36 (2.4) | 40 (2.6) | 0.91 (0.58, 1.42) |
| $<140$ vs $\geq 140$ to $<150$ | VALISH ${ }^{(33)}$ | Ogihara T, Hypertension (2010) | 3,079 | 5 (0.3) | 4 (0.3) | 1.24 (0.33, 4.61) |
| $<140$ vs $\geq 140$ to $<160$ | JATOS ${ }^{(35)}$ | JATOS, Hypertens Res (2008) | 4,418 | 6 (0.3) | 6 (0.3) | 1.00 (0.32, 3.09) |
| SBP/DBP Target (mm Hg) |  |  |  |  |  |  |
| $<125 /<80$ vs $125-134 / 80-84$ | HOMED-BP ${ }^{(37)}$ | Asayama K, Hypertens Res (2012) | 3,518 | 5 (0.3) | 7 (0.4) | 0.71 (0.23, 2.25) |
| $<130 / 80$ vs <90 | REIN-2 ${ }^{(38)}$ | Ruggenenti P, Lancet (2005) | 338 | 1 (0.6) | 1 (0.6) | 1.01 (0.06, 16.0) |
| $\leq 140 / 90$ vs $\leq 150 / 90$ | NR ${ }^{(39)}$ | Wei Y, J Clin Hypertens (2013) | 724 | 9 (2.5) | 9 (2.5) | 0.99 (0.40, 2.48) |
| $<150 / 85$ vs <180/105 | UKPDS ${ }^{(40)}$ | UKPDS Group, BMJ (1998) ${ }^{\text {a }}$ | 1,148 | 107 (14.1) | 69 (17.7) | 0.80 (0.60, 1.05) |
| DBP Target (mm Hg) |  |  |  |  |  |  |
| 75 vs 80-89 | ABCD ${ }^{(42)}$ | Schrier RW, Kidney Intl (2002) | 480 | 19 (8.0) | 15 (6.2) | 1.30 (0.68, 2.49) |
| Meta-analyses | $\mathbf{I}^{\mathbf{2}}$ (\%) | Q Test for Heterogeneity |  |  |  | RR (95\% CI) |
| Any SBP target ( $\mathrm{n}=6$ ) | 0.00 | $\mathrm{Q}(\mathrm{df}=5)=0.63, P=0.99$ | 25,721 | 274 (2.1) | 318 (2.5) | 0.86 (0.74, 1.01) |
| Intensive SBP target <130 ( $\mathrm{n}=6)^{\text {b }}$ | 0.00 | $\mathrm{Q}(\mathrm{df}=5)=0.38, P=0.99$ | 22,077 | 269 (2.4) | 316 (2.9) | 0.85 (0.73, 1.00) |
| All studies ( $\mathrm{n}=11$ ) | 0.00 | $\mathrm{Q}(\mathrm{df}=10)=2.66, P=0.99$ | 31,926 | 415 (2.6) | 419 (2.7) | 0.86 (0.76, 0.99) |
| Sensitivity analyses |  |  |  |  |  |  |
| 100\% Diabetic populations ( $\mathrm{n}=3$ ) ${ }^{\text {c }}$ | 0.00 | $\mathrm{Q}(\mathrm{df}=2)=1.82, P=0.40$ | 6351 | 252 (7.5) | 230 (7.7) | 0.86 (0.73, 1.02) |
| $100 \%$ CKD populations ( $\mathrm{n}=1$ ) | -- | -- | -- | -- | -- | -- |
| Study populations with mean age $\geq 60 y(n=7){ }^{\text {d }}$ | 0.00 | $\mathrm{Q}(\mathrm{df}=6)=0.72, \mathrm{P}=0.99$ | 26,445 | 283 (2.1) | 327 (2.5) | 0.87 (0.74, 1.01) |

Note: This table lists studies which fit inclusion criteria and identified fatal or nonfatal myocardial infarction as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1) only patients with diabetes, 2) only patients with CKD, or 3) a study population with mean age $\geq 60$ years at baseline. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5.
a. Includes fatal or non-fatal myocardial infarction or sudden death.
b. Includes ACCORD, SPRINT, Cardio-Sys, SPS 3, HOMED-BP, and REIN-2.
c. Includes ACCORD, UKPDS, ABCD.
d. Includes ACCORD, SPRINT, Cardio-Sis, SPS3, VALISH, JATOS, and Wei et al.

Table 2.13. Relative risk of fatal or non-fatal stroke in in the intensive [lower] versus the standard [higher] blood pressure group.

| Comparison GroupsIntensive (lower) vsstandard (higher) BP target | Study | Author, Journal (Year) | N | Events, N (\%) |  | RR (95\% CI) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Intensive BP target | Standard BP target |  |
| SBP Target (mm Hg) |  |  |  |  |  |  |
| $<120$ vs <140 | ACCORD ${ }^{(28)}$ | Cushman WC, N Engl J Med (2010) | 4,733 | 36 (1.5) | 62 (2.6) | 0.58 (0.39, 0.88) |
| $<120$ vs <140 | SPRINT ${ }^{(30)}$ | Wright JT, NEJM (2015) | 9,361 | 62 (1.3) | 70 (1.5) | 0.89 (0.63, 1.24) |
| $<130$ vs <140 | Cardio-Sis ${ }^{(31)}$ | Verdecchia P, Lancet (2009) ${ }^{\text {a }}$ | 1,111 | 4 (0.7) | 9 (1.6) | 0.44 (0.14, 1.42) |
| $<130$ vs <140 | SPS3 ${ }^{(32)}$ | Benavente, Lancet (2013) | 3,020 | 125 (8.3) | 152 (10.0) | 0.83 (0.66, 1.04) |
| $<140$ vs $\geq 140$ to $<150$ | VALISH ${ }^{(33)}$ | Ogihara T, Hypertension (2010) | 3,260 | 16 (1.0) | 23 (1.5) | 0.69 (0.37, 1.30) |
| $<140$ vs $\geq 140$ to $<160$ | JATOS ${ }^{(35)}$ | JATOS, Hypertens Res (2008) | 4,418 | 36 (1.6) | 30 (1.4) | 1.20 (0.74, 1.94) |
| SBP/DBP Target (mm Hg) |  |  |  |  |  |  |
| $<125 /<80$ vs $125-134 / 80-84$ | HOMED-BP ${ }^{(37)}$ | Asayama K, Hypertens Res (2012) ${ }^{\text {b }}$ | 3,518 | 20 (1.1) | 16 (0.9) | 1.25 (0.65, 2.40) |
| $<130 / 80$ vs <90 | REIN-2 ${ }^{(38)}$ | Ruggenenti P, Lancet (2005) ${ }^{\text {c }}$ | 338 | 1 (0.6) | 1 (0.6) | 1.01 (0.06, 15.95) |
| $\leq 140 / 90$ vs $\leq 150 / 90$ | NR ${ }^{(39)}$ | Wei Y, J Clin Hypertens (2013) | 724 | 21 (5.8) | 36 (10.0) | 0.58 (0.35, 0.97) |
| $<150 / 85$ vs <180/105 | UKPDS ${ }^{(40)}$ | UKPDS Group, BMJ (1998) | 1,148 | 38 (5.0) | 34 (8.7) | 0.42 (0.18, 1.01) |
| DBP Target (mm Hg) |  |  |  |  |  |  |
| 75 vs 80-89 | ABCD ${ }^{(42)}$ | Schrier RW, Kidney Intl (2002) | 480 | 4 (1.7) | 13 (5.4) | 0.32 (0.10, 0.95) |
| MAP Target (mm Hg) |  |  |  |  |  |  |
| $\leq 92$ vs 102-107 | AASK ${ }^{(46)}$ | Norris K, Am J Kidney Dis (2006) | 1,094 | 26 (4.8) | 29 (5.3) | 0.92 (0.55, 1.54) |
| Meta-analyses | $\mathrm{I}^{\mathbf{2}}$ (\%) | Q Test for Heterogeneity |  |  |  | RR (95\% CI) |
| Any SBP target ( $\mathrm{n}=6$ ) | 24.76 | $\mathrm{Q}(\mathrm{df}=5)=6.65, P=0.25$ | 25,721 | 279 (2.2) | 346 (2.7) | 0.81 (0.66, 0.98) |
| Intensive SBP target <130 $(\mathrm{n}=7)^{\text {d }}$ | 0.00 | $\mathrm{Q}(\mathrm{df}=6)=5.79, \mathrm{P}=0.45$ | 23,169 | 274 (2.4) | 339 (2.9) | 0.82 (0.70, 0.96) |
| All studies ( $\mathrm{n}=12$ ) | 26.43 | $\mathrm{Q}(\mathrm{df}=11)=14.95, P=0.18$ | 33,018 | 389 (2.3) | 475 (2.9) | 0.77 (0.65, 0.91) |
| Sensitivity analyses |  |  |  |  |  |  |
| $100 \%$ Diabetic populations ( $\mathrm{n}=3)^{\text {e }}$ | 0.00 | $\mathrm{Q}(\mathrm{df}=2)=1.08, P=0.58$ | 6361 | 78 (2.3) | 109 (3.6) | 0.56 (0.42, 0.74) |
| 100\% CKD populations ( $\mathrm{n}=2$ ) |  | -- | -- | -- | -- | -- |
| Study populations with mean age $\geq 60 y(\mathrm{n}=7)^{\mathrm{f}}$ | 26.35 | $\mathrm{Q}(\mathrm{df}=6)=8.15, P=0.23$ | 26,445 | 300 (2.3) | 382 (2.9) | 0.78 (0.64, 0.94) |

Note: This table lists studies which fit inclusion criteria and identified fatal or nonfatal stroke as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1) only patients with diabetes, 2) only patients with CKD, or 3 ) a study population with mean age $\geq \geq 60$ years at baseline. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5 .
a. Composite outcome included fatal or non-fatal stroke or transient ischemic attack.
b. Non-fatal stroke only.
c. Fatal stroke only.
d. Includes ACCORD, SPRINT, Cardio-Sys, HOMED-BP, REIN-2, AASK, and SPS3.
e. Includes ACCORD, UKPDS, and ABCD.
f. Includes ACCORD, SPRINT, Cardio-Sis, SPS3, VALISH, JATOS, and Wei et al.

Table 2.14. Relative risk of fatal or non-fatal heart failure in the intensive [lower] versus the standard [higher] blood pressure group.

| Comparison Groups <br> Intensive (lower) vs <br> standard (higher) BP target | Study |  |  | Author, Journal (Year) | N |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: This table lists studies which fit inclusion criteria and identified fatal or nonfatal heart failure as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1 ) only patients with diabetes, 2 ) only patients with CKD, or 3 ) a study population with mean age $\geq 60$ years at baseline. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5 . a. Includes ACCORD, SPRINT, Cardio-Sys, and AASK
b. Includes ACCORD, UKPDS, and ABCD.
c. Includes ACCORD, SPRINT, Cardio-Sis, JATOS, and Wei et al.

Table 2.15. Relative risk of renal events ${ }^{\mathrm{a}}$ in the intensive [lower] versus the standard [higher] blood pressure group.

| Comparison Groups <br> Intensive (lower) vs <br> standard (higher) BP target | Study |  |  |  | Author, Journal (Year) | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: This table lists studies which fit inclusion criteria and identified renal events as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1) only patients with diabetes, 2) only patients with CKD, or 3) a study population with mean age $\geq 60$ years at baseline. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5.
a. Renal events include the following composite of outcomes: end stage renal disease or death, doubling of serum creatinine, reduction in glomerular filtration rate (GFR) of 50\%, long-term dialysis, kidney transplantation, progression of chronic kidney disease (CKD), renal failure, and renal failure in absence of acute reversible cause.
b. In-trial results presented.
c. Includes: ACCORD, SPRINT, REIN-2, AASK, and MDRD.
d. Includes REIN-2, AASK, and MDRD.
e. Includes ACCORD, SPRINT, VALISH, and JATOS.

Table 2.16. Renal outcomes data including data from the longest available follow-up in AASK and MDRD, not in-trial data.

| Comparison Groups <br> Intensive (lower) vs <br> standard (higher) BP target | Study |  |  | Events, N (\%) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: This table lists studies which fit inclusion criteria and identified fatal or nonfatal myocardial infarction as an outcome. Separate random effects meta-analyses for this outcome were conducted using the studies referenced above and based on blood pressure (BP) targets. Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1) only patients with diabetes, 2) only patients with CKD, or 3) a study population with mean age $\geq \geq 60$ years at baseline. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5.
Renal events include the following: composite renal end points, renal events, progression of chronic kidney disease (CKD), renal failure, renal failure in absence of acute reversible cause.
a. Includes: ACCORD, SPRINT, REIN-2, AASK, and MDRD.

* Longest follow up selected, follow up after the intervention phase of the trial

Table 2.17. Sensitivity Analyses Examining the Relative Risk (95\% Confidence Interval) for a Given Outcome for Intensive [Lower] Blood Pressure Target Versus any Standard [Higher] Blood Pressure Target Outcomes Among Studies in Patients with Diabetes Mellitus, Chronic Kidney Disease, or Mean Population Age $\geq 60$ Years.

| Outcome <br> Subpopulation of interest | Studies included, N | Study participants included, $\mathbf{N}$ | Events, N (\%) |  | RR | (95\% CI) | Heterogeneity |  | Funnel Plot Asymmetry |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Intensive BP target | Standard <br> BP target |  |  | $\mathrm{I}^{\mathbf{2}}$ (\%) | $P$-value | P-value for Kendall's Tau (rank correlation) | P-value for <br> Egger's Regression Test |
| All-cause mortality |  |  |  |  |  |  |  |  |  |  |
| 100\% diabetes | 3 | 6351 | 297 (8.8) | 252 (3.7) | 0.85 | (0.64, 1.14) | 60.87 | 0.08 | 0.33 | 0.34 |
| 100\% CKD | 3 | 2269 | 51 (4.5) | 53 (4.7) | 0.96 | $(0.66,1.40)$ | 0.00 | 0.46 | 1.00 | 0.82 |
| Mean age $\geq 60 \mathrm{y}$ | 8 | 38,971 | 751 (3.9) | 807 (4.1) | 0.92 | $(0.76,1.11)$ | 67.11 | 0.003 | 0.55 | 0.80 |
| CVD mortality |  |  |  |  |  |  |  |  |  |  |
| 100\% diabetes | 2 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 100\% CKD | 2 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| Mean age $\geq 60 \mathrm{y}$ | 6 | 34,841 | 235 (1.4) | 278 (1.6) | 0.82 | (0.59, 1.13) | 63.34 | 0.02 | 0.47 | 0.89 |
| Major Cardiovascular Disease Events |  |  |  |  |  |  |  |  |  |  |
| 100\% diabetes | 1 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 100\% CKD | 2 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| Mean age $\geq 60 \mathrm{y}$ | 5 | 19,007 | 585 (6.2) | 725 (7.6) | 0.77 | (0.64, 0.93) | 54.59 | 0.07 | 0.48 | 0.29 |

Fatal or non-fatal
myocardial infarction

| $100 \%$ diabetes | 3 | 6351 | $252(7.5)$ | $230(7.7)$ | 0.86 | $(0.73,1.02)$ | 0.00 | 0.40 | 1.00 | 0.35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $100 \%$ CKD | 1 | -- | - | - | - | - | - | -- | -- | -- |
| Mean age $\geq 60 y$ | 7 | 26,445 | $283(2.1)$ | $327(2.5)$ | 0.87 | $(0.74,1.01)$ | 0.00 | 0.99 | 0.38 | 0.32 |


| Fatal or non-fatal stroke |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100\% diabetes | 3 | 6351 | 78 (2.3) | 109 (3.6) | 0.56 | (0.42, 0.74) | 0.00 | 0.58 | 0.33 | 0.04 |
| 100\% CKD | 2 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| Mean age $\geq 60 \mathrm{y}$ | 7 | 26,445 | 300 (2.3) | 382 (2.9) | 0.78 | (0.64, 0.94) | 26.35 | 0.23 | 0.77 | 0.37 |

Fatal or non-fatal heart

## failure

| $100 \%$ diabetes | 3 | 6351 | $116(3.3)$ | $125(4.2)$ | 0.77 | $(0.46,1.28)$ | 63.30 | 0.07 | 1.00 | 0.78 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $100 \%$ CKD | 1 | -- | -- | -- | -- | -- | - | - | - | - |
| Mean age $\geq 60 y$ | 5 | 20,346 | $162(1.6)$ | $220(2.2)$ | 0.71 | $(0.51,0.99)$ | 41.98 | 0.14 | 0.84 | 0.55 |
| Renal Eva |  |  |  |  |  |  |  |  |  |  |

100\% diabetes

| $100 \%$ CKD | 3 | 2269 | $272(23.9)$ | $267(23.6)$ | 1.03 | $(0.89,1.19)$ | 0.00 | 0.52 | 1.00 | 0.81 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean age $\geq 60 y$ | 4 | 14,869 | $88(1.2)$ | $90(1.2)$ | 0.97 | $(0.73,1.31)$ | 0.00 | 0.72 | 0.75 | 0.41 |

[^0]Table 2.18. Effect estimates and subgroup analyses reported by each study included in this meta-analysis: Relative risk (95\% confidence interval) for a given outcome for any intensive [lower] blood pressure target vs any standard [higher] blood pressure target.

| Outcome | Study Acronym | Overall or Subgroup | N |  | Events, N (\%/yr) or (\%*) |  | Effect Estimate (95\% CI) | $P$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Intensive BP target | Standard BP target | Intensive BP target | Standard BP target |  |  |
| All-cause mortality | ACCORD ${ }^{(28)}$ | Overall | 2362 | 2371 | 150 (1.28) | 144 (1.19) | HR: 1.07 (0.85-1.35) | 0.55 |
|  | SPRINT ${ }^{(30)}$ | Overall | 4678 | 4683 | 155 (1.03) | 210 (1.40) | HR: 0.73 (0.60-0.90) | 0.003 |
|  | Cardio-Sis ${ }^{(31)}$ | Overall | 557 | 553 | 4 (0.7*) | 5 (0.9*) | HR: 0.77 (0.21-2.88) | 0.70 |
|  | SPS3 ${ }^{(32)}$ | Overall | 1501 | 1519 | 106 (1.80) | 101 (1.74) | HR: 1.03 (0.79-1.35) | 0.82 |
|  | SPS3 ${ }^{(17)}$ | $\geq 75$ years | 248 | 246 | 37 (3.89) | 40 (4.53) | HR: 0.83 (0.53-1.29) | 0.41 |
|  | SPS3 ${ }^{(17)}$ | $<75$ years | 1253 | 1273 | 69 (1.40) | 61 (1.24) | HR: 1.13 (0.80-1.59) | 0.49 |
|  | JATOS ${ }^{(35)}$ | Overall | 2212 | 2206 | 54 (2.44*) | 42 (1.90*) | HR: NR | 0.22 |
|  | HALT-PDK ${ }^{(36)}$ | Overall | 274 | 284 | 0 (0.00) | 2 (0.70) | HR: NR | NR |
|  | HOMED-BP ${ }^{(37)}$ | Overall | 1759 | 1759 | 27 (1.53) | 31 (1.76) | HR: 1.25 (0.97-1.60) | 0.08 |
|  | REIN-2 ${ }^{(38)}$ | Overall | 167 | 168 | 2 (1.20) | 3 (1.79) | NR | NR |
|  | Wei et al. ${ }^{(39)}$ | Overall | 363 | 361 | 51 (14.05) | 87 (24.10) | NR | NR |
|  | UKPDS ${ }^{(40)}$ | Overall | 758 | 390 | 134 (17.67*) | 83 (21.28*) | RR: 0.82 (0.63-1.08) | 0.17 |
|  | ABCD ${ }^{(41)}$ | Overall | 237 | 233 | 13 (5.5*) | 25 (10.7*) | HR: NR | 0.037 |
|  | HOT ${ }^{(44)}$ | Overall | 6262 | 6264 | 207 (3.30*) | 188 (3.00*) | RR: 0.91 (0.74-1.10) | NR |
|  | HOT ${ }^{(44)}$ | Diabetes at baseline | 499 | 501 | 17 (3.4*) | 30 (6.0*) | RR: 1.77 (0.98-3.21) | NR |
|  | AASK ${ }^{(54)}$ | Overall | 540 | 554 | 37 (6.85*) | 43 (7.76*) | NR | NR |
|  | MDRD ${ }^{(47)}$ | Overall | 432 | 408 | 12 (2.8) | 7 (1.7) | HR: NR | NR |
| CVD mortality | ACCORD ${ }^{(28)}$ | Overall | 2362 | 2371 | 60 (0.52) | 58 (0.49) | HR: 1.06 (0.74-1.52) | 0.74 |
|  | SPRINT ${ }^{(30)}$ | Overall | 4678 | 4683 | 37 (0.25) | 65 (0.43) | HR: 0.57 (0.38-0.85) | 0.005 |
|  | VALISH ${ }^{(33)}$ | Overall | 1545 | 1534 | 11 (0.71) | 11 (0.72) | HR: 0.97 (0.42-2.25) | 0.95 |
|  | JATOS ${ }^{(35)}$ | Overall | 2212 | 2206 | 6 (0.27) | 4 (0.18) | HR: NR | 0.53 |
|  | HOMED-BP ${ }^{(37)}$ | Overall | 1759 | 1759 | 3 (0.17) | 5 (0.28) | HR: 1.46 (0.77-2.74) | 0.24 |
|  | REIN-2 ${ }^{(38)}$ | Overall | 167 | 168 | 1 (0.60) | 2 (1.19) | HR: NR | NR |
|  | Wei et al. ${ }^{(39)}$ | Overall | 363 | 361 | 25 (6.89) | 50 (13.85) | HR: NR | 0.002 |
|  | ABCD ${ }^{(42)}$ | Overall | 237 | 243 | 13 (5.4*) | 9 (3.7*) | OR: 0.66 (0.28-1.58) | 0.35 |
|  | HOT ${ }^{(44)}$ | Overall | 6262 | 6264 | 96 (1.53*) | 87 (1.39*) | OR: 0.90 (0.68-1.21) | NR |
|  | $\mathrm{HOT}^{(44)}$ | Diabetes at baseline | 499 | 501 | 7 (1.4*) | 21 (4.2*) | RR: 3.0 (1.28-7.08) | NR |
|  | AASK ${ }^{(46)}$ | Overall | 540 | 554 | 16 (3.0*) | 15 (2.7*) | HR: 0.98 (0.48-2.01) | 0.96 |
| Major Cardiovascular Disease Events | ACCORD ${ }^{(28)}$ | Overall | 2362 | 2371 | 208 (1.87) | 237 (2.09) | HR: 0.88 (0.73-1.06) | 0.20 |
|  | ACCORD ${ }^{(28)}$ | Male | 1234 | 1241 | 1234 (2.15) | 1241 (2.41) | See below, figure 1. | 0.98 |
|  | ACCORD ${ }^{(28)}$ | Female | 1128 | 1130 | 1128 (1.56) | 1130 (1.75) |  |  |
|  | ACCORD ${ }^{(28)}$ | <65 yrs | 1568 | 1548 | 1568 (1.54) | 1548 (1.72) | analyses were reported for | 0.98 |
|  | ACCORD ${ }^{(28)}$ | $\geq 65 \mathrm{yrs}$ | 794 | 823 | 794 (2.53) | 823 (2.79) | the primary outcome |  |
|  | ACCORD ${ }^{(28)}$ | White | 1452 | 1414 | 1452 (1.97) | 1414 (2.34) | (composite of nonfatal myocardial infarction, | 0.44 |
|  | $\mathrm{ACCORD}^{(28)}$ | Nonwhite | 910 | 957 | 910 (1.72) | 957 (1.74) | myocardial infarction, |  |
|  | ACCORD ${ }^{(28)}$ | $\mathrm{HbA1c} \leq 8.0$ | 1050 | 1160 | 1050 (1.34) | 1160 (1.82) | nonfatal stroke, or death from cardiovascular | 0.11 |
|  | ACCORD ${ }^{(28)}$ | HbA1c > 8.0 | 1309 | 1201 | 1309 (2.31) | 1201 (2.35) |  |  |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

|  | ACCORD ${ }^{(28)}$ | Prior CVD, No | 1558 | 1582 | 1558 (1.33) |  |  | 0.78 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\text { ACCORD }{ }^{(28)}$ | Prior CVD, Yes | 804 | 789 | 804 (2.98) | 789 (3.43) | intensive intervention appeared to provide better results for all subgroups for the primary outcome, none of the subgroup analyses reached statistical significance. |  |
|  | SPRINT ${ }^{(30)}$ | Overall | 4678 | 4683 | 243 (1.65) | 319 (6.8) | HR: 0.75 (0.64-0.89) | <0.001 |
|  | SPRINT ${ }^{(30)}$ | Male | 2994 | 3035 | 166 (5.5*) | 230 (7.6*) | HR: 0.72 (0.59-0.88) | 0.45 |
|  | SPRINT ${ }^{(30)}$ | Female | 1684 | 1648 | 77 (4.6*) | 89 (5.4*) | HR: 0.84 (0.62-1.14) |  |
|  | SPRINT ${ }^{(30)}$ | <75 yrs | 3361 | 3364 | 142 (4.2*) | 175 (5.2*) | HR: 0.80 (0.64-1.00) | 0.32 |
|  | SPRINT ${ }^{(30)}$ | $\geq 75 \mathrm{yrs}$ | 1317 | 1319 | 101 (7.7*) | 144 (10.9*) | $\text { HR: } 0.67(0.51-0.86)$ |  |
|  | SPRINT ${ }^{(30)}$ | Black | 1454 | 1493 | 62 (4.3*) | 85 (5.7*) | HR: 0.77 (0.55-1.06) | 0.83 |
|  | SPRINT ${ }^{(30)}$ | Nonblack | 3224 | 3190 | 181 (5.6*) | 234 (7.3*) | HR: 0.74 (0.61-0.90) |  |
|  | SPRINT ${ }^{(30)}$ | Prior CVD, No | $3738$ | $3746$ | 149 (4.0*) | $208\left(5.6^{*}\right)$ | $\text { HR: } 0.71(0.57-0.88)$ | 0.39 |
|  | SPRINT ${ }^{(30)}$ | Prior CVD, Yes | 940 | 937 | 94 (10.0*) | 111 (11.8*) | HR: 0.83 (0.62-1.09) |  |
|  | SPRINT ${ }^{(30)}$ | Prior CKD, No | 3348 | 3367 | 135 (4.0*) | 193 (5.7*) | HR: 0.70 (0.56-0.87) | 0.36 |
|  | SPRINT ${ }^{(30)}$ | Prior CKD, Yes | 1330 | 1316 | 108 (8.1*) | 126 (9.6*) | HR: 0.82 (0.63-1.07) |  |
|  | VALISH <br> (33) | Overall | 1545 | 1534 | 32 (2.07) | 37 (2.41) | HR: 0.84 (0.53-1.36) | 0.48 |
|  | HOMED-BP ${ }^{(37)}$ | Overall | 1759 | 1759 | 26 (1.48) | 25 (1.42) | HR: 1.44 (1.21-1.72) | <0.001 |
|  | Wei et al. ${ }^{(39)}$ | Overall | 363 | 361 | $40 \text { (11.02) }$ | 67 (18.56) | HR: NR | $0.004$ |
|  | $\mathrm{HOT}^{(44)}$ | Overall | 6262 | 6264 | 217 (3.47*) | 232 (3.70*) | RR: 1.07 (0.89-1.28) | NR |
|  | HOT ${ }^{(44)}$ | Diabetes at baseline | 499 | 501 | 22 (4.4*) | 45 (9.0*) | RR: 2.06 (1.24-3.44) | NR |
|  | AASK ${ }^{(46)}$ | Overall | 540 | 554 | 71 (13.1*) | 78 (14.1*) | HR: 0.84 (0.61-1.16) | 0.29 |
| Fatal or nonfatal myocardial infarction | ACCORD ${ }^{(28)}$ | Overall | 2362 | 2371 | 126 (1.13) | 146 (1.28) | HR: 0.87 (0.68-1.10) | 0.25 |
|  | SPRINT ${ }^{(30)}$ | Overall | 4678 | 4683 | 97 (0.65) | 116 (0.78) | HR: 0.83 (0.64-1.09) | 0.19 |
|  | Cardio-Sis ${ }^{(31)}$ | Overall | 557 | 553 | $4(0.7 *)$ | $6(1.1 *)$ | HR: 0.66 (0.19-2.34) | 0.52 |
|  | SPS3 ${ }^{(32)}$ | Overall | 1501 | 1519 | 36 (0.62) | 40 (0.70) | HR: 0.88 (0.56-1.39) | 0.59 |
|  | SPS3 ${ }^{(17)}$ | $\geq 75$ years | 248 | 246 | 5 (0.53) | 6 (0.69) | HR: 0.77 (0.23-2.52) | 0.66 |
|  | SPS3 ${ }^{(17)}$ | <75 years | 1253 | 1273 | $31 \text { (0.64) }$ | $34 \text { (0.70) }$ | $\text { HR: } 0.91 \text { (0.56-1.48) }$ | 0.71 |
|  | VALISH ${ }^{(33)}$ | Overall | 1545 | 1534 | $5(0.32)$ | $4(0.26)$ | HR: 1.23 (0.33-4.56) | 0.76 |
|  | JATOS ${ }^{(35)}$ | Overall | 2212 | 2206 | $6 \text { (0.27) }$ | $6 \text { (0.27) }$ | HR: NR | NR |
|  | HOMED-BP ${ }^{(37)}$ | Overall | 1759 | 1759 | $5(0.28)$ | $7 \text { (0.40) }$ | HR: 1.57 (0.98-2.50) | 0.06 |
|  | REIN-2 ${ }^{(38)}$ | Overall | 167 | 168 | $1 \text { (0.60) }$ | $1(0.60)$ | HR: NR | NR |
|  | Wei et al. | Overall | 363 | 361 | $9 \text { (2.48) }$ | $9 \text { (2.49) }$ | HR: NR | 0.99 |
|  | UKPDS ${ }^{(40)}$ | Overall | 758 | 390 | 107 (14.12*) | 69 (17.69*) | RR: 0.79 (0.59-1.07) | 0.13 |
|  | ABCD ${ }^{(42)}$ | Overall | 237 | 243 | 19 (8.0*) | 15 (6.2*) | $\text { OR: } 0.75 \text { (0.37-1.52) }$ | 0.43 |
|  | HOT ${ }^{(44)}$ | Overall | 6262 | 6264 | 61 (0.97*) | 84 (1.34*) | RR: 1.37 (0.99-1.91) | NR |
|  | HOT ${ }^{(44)}$ | Diabetes at baseline | 499 | 501 | $7\left(1.4^{*}\right)$ | $14\left(2.8^{*}\right)$ | $\text { RR: } 2.01 \text { (0.81-4.97) }$ | NR |
| Fatal or nonfatal stroke | ACCORD ${ }^{(28)}$ | Overall | 2362 | 2371 | 36 (0.32) | 62 (0.53) | HR: 0.59 (0.39-1.35) | 0.55 |
|  | SPRINT ${ }^{(30)}$ | Overall | $4678$ | 4683 | $62(0.41)$ | $70(0.47)$ | HR: 0.89 (0.63-1.25) | 0.50 |
|  | $\text { Cardio-Sis }{ }^{(31)}$ | Overall | 557 | 553 | $4\left(0.7^{*}\right)$ | $9\left(1.6^{*}\right)$ | HR: 0.44 (0.13-1.42) | 0.16 |
|  | SPS3 ${ }^{(32)}$ | Overall | 1501 | 1519 | 125 (2.25) | 152 (2.77) | HR: 0.81 (0.64-1.03) | 0.08 |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

|  | SPS3 ${ }^{(32)}$ | Male ( $\mathrm{n}=1902$ ) | NR | NR | 80 (2.41) | 111 (3.09) | HR: 0.78 (0.59-1.04) | 0.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SPS3 ${ }^{(32)}$ | Female ( $\mathrm{n}=1118$ ) | NR | NR | 45 (2.01) | 41 (2.17) | HR: 0.93 (0.61-1.43) |  |
|  | SPS3 ${ }^{(32)}$ | $<65$ yrs ( $\mathrm{n}=1757$ ) | NR | NR | 68 (2.05) | 87 (2.71) | HR: 0.76 (0.55-1.05) | 0.53 |
|  | SPS3 ${ }^{(32)}$ | $\geq 65 \mathrm{yrs}$ ( $\mathrm{n}=1263$ ) | NR | NR | 57 (2.53) | 67 (2.86) | HR: 0.89 (0.62-1.26) |  |
|  | SPS3 ${ }^{(32)}$ | Hispanic ( $\mathrm{n}=916$ ) | NR | NR | 29 (1.83) | 36 (2.23) | HR: 0.82 (0.51-1.34) | 0.85 |
|  | SPS3 ${ }^{(32)}$ | White ( $\mathrm{n}=1538$ ) | NR | NR | 63 (2.22) | 72 (2.56) | HR: 0.86 (0.62-1.21) |  |
|  | SPS3 ${ }^{(32)}$ | Black ( $\mathrm{n}=492$ ) | NR | NR | 30 (3.04) | 37 (4.09) | HR: 0.75 (0.47-1.22) |  |
|  | SPS3 ${ }^{(32)}$ | Other/mixed Race $(\mathrm{n}=74)$ | NR | NR | 3 (2.11) | 7 (4.53) | HR: 0.48 (0.12-1.85) |  |
|  | SPS3 ${ }^{(32)}$ | Non-diabetic ( $\mathrm{n}=1914$ ) | NR | NR | 59 (1.64) | 78 (2.15) | HR: 0.76 (0.54-1.07) | 0.64 |
|  | SPS3 ${ }^{(32)}$ | Diabetes ( $\mathrm{n}=1106$ ) | NR | NR | 66 (3.37) | 74 (3.97) | HR: 0.85 (0.61-1.19) |  |
|  | SPS3 ${ }^{(17)}$ | $\geq 75$ years | 248 | 246 | 27 (3.07) | 26 (3.07) | HR: 1.01 (0.59-1.73) | 0.98 |
|  | SPS3 ${ }^{(17)}$ | $<75$ years | 1253 | 1273 | 98 (2.09) | 126 (2.72) | HR: 0.77 (0.59-1.01) | 0.06 |
|  | VALISH ${ }^{(33)}$ | Overall | 1545 | 1534 | 16 (1.04) | 23 (1.50) | HR: 0.68 (0.36-1.29) | 0.24 |
|  | JATOS ${ }^{(35)}$ | Overall | 2212 | 2206 | 36 (1.63) | 30 (1.35) | HR: NR | NR |
|  | HOME-BP ${ }^{(37)}$ | Overall | 1759 | 1759 | 20 (1.14) | 16 (0.91) | HR: 1.53 (1.14-2.05) | 0.005 |
|  | REIN-2 ${ }^{(38)}$ | Overall | 167 | 168 | 0 (0.00) | 1 (0.60) | HR: NR | NR |
|  | Wei et al. ${ }^{(39)}$ | Overall | 363 | 361 | 21 (5.79) | 36 (9.97) | HR: NR | 0.87 |
|  | UKPDS ${ }^{(40)}$ | Overall | 758 | 390 | 38 (5.01*) | 34 (8.72*) | RR: 0.56 (0.35-0.89) | 0.013 |
|  | ABCD ${ }^{(42)}$ | Overall | 237 | 243 | 4 (1.7*) | 13 (5.4*) | OR: 3.29 (1.06-10.25) | 0.03 |
|  | HOT ${ }^{(44)}$ | Overall | 6262 | 6264 | 89 (1.42*) | 94 (1.50*) | RR1.37 (0.99-1.91) | NR |
|  | $\mathrm{HOT}^{(44)}$ | Diabetes at baseline | 499 | 501 | 12 (4.4*) | 17 (9.0*) | RR: 1.43 (0.68-2.99) | NR |
|  | AASK ${ }^{(46)}$ | Overall | 540 | 554 | 26 (4.8*) | $29 \text { (5.3*) }$ |  |  |
| Fatal or nonfatal heart failure | ACCORD ${ }^{(28)}$ | Overall | 2362 | 2371 | 83 (0.73) | 90 (0.78) | HR: 0.94 (0.70-1.26) | 0.67 |
|  | SPRINT ${ }^{(30)}$ | Overall | 4678 | 4683 | 62 (0.41) | 100 (0.67) | HR: 0.62 (0.45-0.84) | 0.002 |
|  | Cardio-Sis ${ }^{(31)}$ | Overall | 557 | 553 | 3 (0.5*) | 7 (1.3*) | HR: 0.42 (0.11-1.63) | 0.21 |
|  | JATOS ${ }^{(35)}$ | Overall | 2212 | 2206 | 8 (0.36) | 7 (0.32) | HR: NR | NR |
|  | Wei et al. ${ }^{(39)}$ | Overall | 363 | 361 | 6 (1.65) | 16 (4.43) | HR: NR | 0.03 |
|  | UKPDS ${ }^{(40)}$ | Overall | 758 | 390 | 21 (2.77*) | 24 (6.15*) | RR: 0.44 (0.20-0.94) | 0.004 |
|  | ABCD ${ }^{(42)}$ | Overall | 237 | 243 | 12 (5.1*) | 11 (4.5*) | OR: 0.89 (0.38-2.06) | 0.78 |
|  | AASK ${ }^{(46)}$ | Overall | 540 | 554 | 27 (5.0*) | 23 (4.2*) | NR | NR |
| Renal Events | ACCORD ${ }^{(28)}$ SPRINT ${ }^{(30)}$ |  |  |  |  |  |  |  |
|  |  | Participants with CKD at baseline | 1330 | 1316 | 14 (0.33) | 15 (0.36) | HR: 0.89 (0.42-1.87) | 0.76 |
|  | VALISH ${ }^{(33)}$ | Overall | 1545 | 1534 | 5 (0.32) | 2 (0.13) | HR: 2.45 (0.48-12.64) | 0.27 |
|  | JATOS ${ }^{(35)}$ | Overall | 2212 | 2206 | 8 (0.36*) | 9 (0.41*) | HR: NR | NR |
|  | JATOS ${ }^{(34)}$ | Males |  | $843$ | 3 (0.34*) | 5 (0.59*) | HR: NR | 0.45 |
|  | JATOS ${ }^{(34)}$ | Age $\geq 75 \mathrm{yrs}$ | 935 | 934 | 5 (0.53*) | $4(0.43 *)$ | HR: NR | 0.74 |
|  | $\mathrm{JATOS}^{(34)}$ | Diabetes | 264 | 257 | 1 (0.38*) | 3 (1.17*) | HR: NR | 0.33 |
|  | JATOS ${ }^{(34)}$ | $\begin{aligned} & \mathrm{eGFR}<60 \mathrm{~mL} / \mathrm{min} / 1.73 \\ & \mathrm{~m} 2 \end{aligned}$ | 1230 | 1269 | 5 (0.38*) | 8 (1.17*) | HR: NR | 0.44 |
|  | JATOS ${ }^{(34)}$ | Proteinuria | 224 | 230 | 2 (0.89*) | 4 (1.73*) | HR: NR | 0.44 |
|  | REIN-2 ${ }^{(38)}$ | Overall | 167 | 168 | 38 (22.75*) | 34 (20.24*) | HR: 1.00 (0.61-1.64) | 0.99 |
|  | REIN-2 ${ }^{(38)}$ | Baseline proteinuria $\geq 3 \mathrm{~g} / 24 \mathrm{~h}$ | NR | NR | NR | NR | HR: 1.09 (0.55-2.19) | 0.81 |



Note: Effect estimates and subgroup analyses reported by each study included in this meta-analysis are shown in the table above for each outcome for any intensive [lower] blood pressure target vs any standard [higher] blood pressure target

Table 2.19. Comparison of relative risk reductions for intensive (lower) versus standard (higher) blood pressure targets for seven outcomes across recently published meta- analyses.

| Author, Journal, Year | Intensive Treatment Target BP | Less <br> Intensive <br> Target BP | All-cause Mortality | CV Mortality | $\begin{gathered} \text { Major CV } \\ \text { events } \end{gathered}$ | Myocardial Infarction ${ }^{\text {a }}$ | Stroke ${ }^{\text {a }}$ | Heart Failure <br> a | Renal Events |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current meta-analysis | Any intensive BP | Less intensive target BP | $\begin{gathered} 0.89 \\ (0.77,1.02) \end{gathered}$ | $\begin{gathered} 0.87 \\ (0.67,1.13) \\ \hline \end{gathered}$ | $\begin{gathered} 0.83 \\ (0.75,0.92) \end{gathered}$ | $\begin{gathered} 0.86 \\ (0.76,0.99) \end{gathered}$ | $\begin{gathered} \hline 0.77 \\ (0.65,0.91) \end{gathered}$ | $\begin{gathered} 0.75 \\ (0.56,0.99) \end{gathered}$ | $\begin{gathered} 1.01 \\ (0.89,1.15) \end{gathered}$ |
| Current meta-analysis | $\begin{aligned} & \text { SBP target <130 } \\ & \mathrm{mm} \mathrm{Hg} \end{aligned}$ | Less intensive target BP | $\begin{gathered} 0.92 \\ (0.79,1.06) \\ \hline \end{gathered}$ | $\begin{aligned} & 0.81 \\ & (0.58,1.14) \\ & \hline \end{aligned}$ | $\begin{gathered} 0.83 \\ (0.74,0.92) \\ \hline \end{gathered}$ | $\begin{gathered} 0.85 \\ (0.73,1.00) \\ \hline \end{gathered}$ | $\begin{gathered} 0.82 \\ (0.70,0.96) \\ \hline \end{gathered}$ | $\begin{gathered} 0.81 \\ (0.58,1.14) \\ \hline \end{gathered}$ | $\begin{gathered} 1.01 \\ (0.89,1.16) \\ \hline \end{gathered}$ |
| LV, PLOS Medicine, $2012{ }^{(57)}$ | More intensive target BP | Less intensive target BP | .. |  | $\begin{gathered} 0.89 \\ (0.99,0.79) \\ \hline \end{gathered}$ | $\begin{gathered} 0.87 \\ (0.75,1.00) \\ \hline \end{gathered}$ | $\begin{gathered} 0.76 \\ (0.63,0.92) \\ \hline \end{gathered}$ | ... | $\begin{gathered} 0.89 \\ (0.82,0.97)^{\text {b }} \\ \hline \end{gathered}$ |
| Brunstrom, BMJ, $2016{ }^{(58)}$ | $\begin{aligned} & \hline \text { Attained SBP } \\ & >140 \mathrm{~mm} \mathrm{Hg} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 0.96 \\ (0.86,1.06) \\ \hline \end{gathered}$ | $\begin{gathered} 0.87 \\ (0.71,1.07) \end{gathered}$ | ... | $\begin{gathered} 0.82 \\ (0.72,0.92) \end{gathered}$ | $\begin{gathered} 0.90 \\ (0.76,1.06) \\ \hline \end{gathered}$ | $\begin{gathered} 0.83 \\ (0.68,1.00) \end{gathered}$ | $\begin{gathered} 0.88 \\ (0.76,1.03)^{\mathrm{b}} \end{gathered}$ |
| Brunstrom, BMJ, $2016{ }^{(58)}$ | Attained SBP $130-140 \mathrm{~mm} \mathrm{Hg}$ |  | $\begin{gathered} 0.86 \\ (0.79,0.93) \\ \hline \end{gathered}$ | $\begin{gathered} 0.86 \\ (0.72,1.04)) \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.88 \\ (0.79,0.97) \\ \hline \end{gathered}$ | $\begin{gathered} 0.91 \\ (0.83,1.00) \\ \hline \end{gathered}$ | $\begin{gathered} 0.81 \\ (0.70,0.94) \\ \hline \end{gathered}$ | $\begin{gathered} 0.84 \\ (0.66,1.07)^{\mathrm{b}} \\ \hline \end{gathered}$ |
| Brunstrom, BMJ, $2016{ }^{(58)}$ | $\begin{aligned} & \text { Attained SBP } \\ & <130 \mathrm{~mm} \mathrm{Hg} \end{aligned}$ |  | $\begin{gathered} 1.10 \\ (0.91,1.33) \end{gathered}$ | $\begin{gathered} 1.26 \\ (0.89,1.77) \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.94 \\ (0.76,1.15) \end{gathered}$ | $\begin{gathered} 0.65 \\ (0.42,0.99) \end{gathered}$ | $\begin{gathered} 0.93 \\ (0.71,1.21) \end{gathered}$ | $\begin{gathered} 1.01 \\ (0.71,1.43)^{b} \end{gathered}$ |
| Ettehad, Lancet, $2016{ }^{(59)}$ | Outcomes per 10 mm Hg reduction in SBP |  | $\begin{gathered} 0.87 \\ (0.77,0.83) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.80 \\ (0.77,0.83) \\ \hline \end{gathered}$ | 退 | $\begin{gathered} 0.73 \\ (0.68,0.77) \\ \hline \end{gathered}$ | $\begin{gathered} 0.72 \\ (0.67-0.78) \\ \hline \end{gathered}$ | $\begin{gathered} 0.95 \\ (0.84,1.07)^{\mathrm{c}} \\ \hline \end{gathered}$ |
| Thomopolous, J Hypertens, $2016{ }^{(60)}$ | More intensive target BP | Less intensive target BP | $\begin{gathered} 0.83 \\ (0.69,1.03) \\ \hline \end{gathered}$ | $\begin{gathered} 0.79 \\ (0.63,0.97) \\ \hline \end{gathered}$ | $\ldots$ | $\ldots$ | $\begin{gathered} 0.71 \\ (0.60,0.84) \\ \hline \end{gathered}$ | $\begin{gathered} 0.80 \\ (0.49,1.31) \\ \hline \end{gathered}$ | ... |
| Verdecchia, Hypertension, $2016{ }^{(61)}$ | More intensive target BP | Less intensive target BP | $\begin{gathered} 0.89 \\ (0.77,1.02) \\ \hline \end{gathered}$ | $\begin{gathered} 0.82 \\ (0.67,0.99) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.85 \\ (0.76,0.96) \\ \hline \end{gathered}$ | $\begin{gathered} 0.80 \\ (0.68,0.95) \\ \hline \end{gathered}$ | $\begin{gathered} 0.75 \\ (0.57,0.99) \\ \hline \end{gathered}$ | $\ldots$ |
| Xie, Lancet, $2016{ }^{(62)}$ | Intensive (any lower BP) | Standard (any <br> higher BP) | $\begin{gathered} 0.91 \\ (0.81,1.03) \\ \hline \end{gathered}$ | $\begin{gathered} 0.91 \\ (0.74-1.11) \\ \hline \end{gathered}$ | $\begin{gathered} 0.86 \\ (0.78-0.96) \\ \hline \end{gathered}$ | $\begin{gathered} 0.87 \\ (0.76,1.00) \\ \hline \end{gathered}$ | $\begin{gathered} 0.78 \\ (0.68,0.90) \\ \hline \end{gathered}$ | $\begin{gathered} 0.85 \\ (0.66,1.11) \\ \hline \end{gathered}$ | $\begin{gathered} 0.90 \\ (0.77,1.06)^{\mathrm{b}} \\ \hline \end{gathered}$ |
| Bangalore, Am J Med, 2017 (63) | $\begin{aligned} & \mathrm{SBP}<120 \\ & \mathrm{mmHg} \end{aligned}$ | $\begin{aligned} & \mathrm{SBP}<140 \\ & \mathrm{mmHg} \end{aligned}$ | $\begin{gathered} 0.89 \\ (0.63,1.24) \\ \hline \end{gathered}$ | $\begin{gathered} 0.78 \\ (0.46,1.31) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.85 \\ (0.71,1.02) \\ \hline \end{gathered}$ | $\begin{gathered} 0.73 \\ (0.48,1.11) \\ \hline \end{gathered}$ | $\begin{gathered} 0.76 \\ (0.38,1.51) \\ \hline \end{gathered}$ | $\ldots$ |
| Bangalore, Am J Med, 2017 (63) | $\begin{aligned} & \mathrm{SBP}<130 \\ & \mathrm{mmHg} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{SBP}<140 \\ & \mathrm{mmHg} \end{aligned}$ | $\begin{gathered} 0.98 \\ (0.73,1.31) \\ \hline \end{gathered}$ | $\begin{gathered} 1.02 \\ (0.62,1.67) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.95 \\ (0.68,1.34) \\ \hline \end{gathered}$ | $\begin{gathered} 0.83 \\ (0.58,1.18) \\ \hline \end{gathered}$ | $\begin{gathered} 0.98 \\ (0.42,2.26) \\ \hline \end{gathered}$ | $\ldots$ |
| Bangalore, Am J Med, $2017{ }^{(63)}$ | $\begin{aligned} & \mathrm{SBP}<120 \\ & \mathrm{mmHg} \end{aligned}$ | $\begin{aligned} & \mathrm{SBP}<160 \\ & \mathrm{mmHg} \end{aligned}$ | $\begin{gathered} 0.88 \\ (0.52,1.50) \\ \hline \end{gathered}$ | $\begin{gathered} 0.69 \\ (0.29,1.60) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.68 \\ (0.47,1.00) \\ \hline \end{gathered}$ | $\begin{gathered} 0.54 \\ (0.29,1.00) \\ \hline \end{gathered}$ | $\begin{gathered} 0.48 \\ (0.14,1.62) \\ \hline \end{gathered}$ | $\ldots$ |
| Bavishi, JACC, $2017{ }^{(64)}$ | Intensive (any lower BP) | Standard (any higher BP) | $\ldots$ | $\begin{gathered} 0.67 \\ (0.45,0.98) \end{gathered}$ | $\begin{gathered} 0.71 \\ (0.60,0.84) \\ \hline \end{gathered}$ | $\begin{gathered} 0.79 \\ (0.56,1.12) \\ \hline \end{gathered}$ | $\begin{gathered} 0.80 \\ (0.61,1.05) \\ \hline \end{gathered}$ | $\begin{gathered} 0.63 \\ (0.40,0.99) \\ \hline \end{gathered}$ | $\begin{gathered} 1.81 \\ (0.86,3.80)^{c} \\ \hline \end{gathered}$ |
| Weiss, Ann Intern Med, 2017 (65) | $\begin{aligned} & \text { SBP }<160 \mathrm{~mm} \\ & \mathrm{Hg} \\ & \hline \end{aligned}$ | Less intensive target BP | $\begin{gathered} 0.85 \\ (0.72,0.99) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.86 \\ (0.72,0.96) \\ \hline \end{gathered}$ | ... | $\begin{gathered} 0.80 \\ (0.62,1.01) \\ \hline \end{gathered}$ | $\ldots$ | $\ldots$ |
| Weiss, Ann Intern Med, 2017 (65) | $\begin{aligned} & \mathrm{SBP}<140 \text { or } \\ & \mathrm{DBP}<85 \mathrm{mmHg} \end{aligned}$ | Less intensive target BP | $\begin{gathered} 0.86 \\ (0.69,1.06) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.82 \\ (0.64,1.00) \\ \hline \end{gathered}$ | $\ldots$ | $\begin{gathered} 0.79 \\ (0.59,0.99) \\ \hline \end{gathered}$ | $\ldots$ | $\ldots$ |
| Abbreviations: BP, blood pressure; CV, cardiovascular; SBP, systolic blood pressure. |  |  |  |  |  |  |  |  |  |

## Part 3: First-Line Antihypertensive Drug Class Comparisons in Adults

Table 3.1 Electronic search terms used for the current meta-analysis (Part 3-First-Line Antihypertensive Drug Class Comparisons in Adults

|  | PubMed Search |  |
| :---: | :---: | :---: |
| 3 | Search ((hypertension[Mesh Terms] OR hypertension[tiab] OR hypertensive[tiab] OR blood pressure[ti] OR blood pressure[mh])) | Hypertension |
| 4 | Search ((Randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized[tiab] OR randomised[tiab] OR placebo[tiab] OR clinical trials as a topic[mesh:noexp] OR randomly[tiab] OR trial[ti])) | Randomized trials |
| 5 | Search ((Angiotensin-Converting Enzyme Inhibitors[mh] OR captopril[mh] OR cilazapril[mh] OR enalapril[mh] OR enalaprilat[mh] OR fosinopril[mh] OR Lisinopril[mh] OR perindopril[mh] OR Ramipril[mh] ) OR Angiotensin-Converting Enzyme Inhibitors [Pharmacological Action] OR (angiotensin converting enzyme inhibit*[tiab] OR angiotensin converting enzyme antagon*[tiab] OR acei[tiab] OR ace inhibit*[tiab] OR kininase II antagon*[tiab] OR kininase II inhibit*[tiab] OR angiotensin I converting enzyme inhibit*[tiab] OR angiotensin I converting enzyme antagon*[tiab] OR dipeptidyl carboxypeptidase inhibitor [tiab]) OR (alacepril OR altiopril OR ancovenin OR benazepril OR benazeprilat OR captopril OR ceranapril OR ceronapril OR cilazapril OR deacetylalacepril OR delapril OR derapril OR enalapril OR enalaprilat OR epicaptopril OR fasidotril OR fosinopril or gemopatrilat or idrapril or imidapril OR indolapril or libenzapril or Lisinopril OR moexipril OR moveltipril or omapatrilat OR pentopril or perindopril OR pivopril OR quinapril OR Ramipril OR rentiapril or saralasin or s nitrosocaptopril OR spirapril OR temocapril OR teprotide OR utibapril or zabicipril OR trandolapril OR zofenopril)) | ACE inhibitors |
| 6 | Search (Angiotensin Receptor Antagonists[mh] OR Angiotensin II Type 1 Receptor Blockers[mh] OR Angiotensin II Type 2 Receptor Blockers[mh] OR Losartan[mh] OR Saralasin[mh] OR Angiotensin Receptor Antagonists[pharmacological action] OR Angiotensin II Type 1 Receptor Blockers[pharmacological action] OR Angiotensin II Type 2 Receptor Blockers[pharmacological action] OR angiotensin receptor antagon*[tiab] OR angiotensin receptor block*[tiab] OR angiotensin II type 1 receptor block*[tiab] OR angiotensin II type 1 receptor antagon*[tiab] OR angiotensin II type 2 receptor block*[tiab] OR angiotensin II type 2 receptor antagon*[tiab] OR angiotensin II receptor antagon*[tiab] OR angiotensin II receptor block*[tiab] OR sartan[tiab] OR sartans[tiab] OR arbs[tiab] OR arb[tiab] OR Abitesartan OR Azilsartan OR candesartan OR elisartan OR embusartan OR eprosartan OR forasartan OR irbesartan OR KT3-671 OR losartan OR milfasartan OR olmesartan OR saralasin OR saprisartan or tasosartan or telmisartan OR tasosartan OR valsartan OR zolasartan) | Angiotensin receptor blockers |

Search ((Adrenergic beta-Antagonists[mh] OR adrenergic beta-1 receptor antagonists[mh] OR adrenergic beta-2 receptor antagonists[mh] OR adrenergic beta-3 receptor antagonists[mh] OR acebutolol[mh] OR atenolol[mh] OR betaxolol[mh] OR bisoprolol[mh] OR bupranolol[mh] OR celiprolol[mh] OR labetalol[mh] OR metoprolol[mh] OR nadolol[mh] OR oxprenolol[mh] OR penbutolol[mh] OR pindolol[mh] OR propranolol[mh]) OR (Adrenergic beta-Antagonists[pharmacological action] OR adrenergic beta-1 receptor antagonists[pharmacological action] OR adrenergic beta-2 receptor antagonists[pharmacological action] OR adrenergic beta-3 receptor antagonists[pharmacological action]) OR (adrenergic beta antagon*[tiab] OR adrenergic beta-1 receptor antagon*[tiab] OR adrenergic beta-2 receptor antagon*[tiab] OR adrenergic beta-3 receptor antagon*[tiab] OR beta adrenergic receptor block*[tiab] OR beta adrenergic block*[tiab] OR adrenergic beta receptor block*[tiab] OR beta atagon*[tiab] OR beta adrenergic antagon*[tiab] OR beta adrenoreceptor antagon*[tiab] OR beta block*[tiab]) OR (acebutolol OR adimolol OR afurolol OR alprenolol OR amosulalol OR arotinolol OR atenolol OR befunolol OR betaxolol OR bevantolol OR bisoprolol OR bopindolol OR bornaprolol OR brefanolol OR bucindolol OR bucumolol OR bufetolol OR bufuralol OR bunitrolol OR bunolol OR bupranolol OR butofilolol OR butoxamine OR carazolol OR carteolol OR carvedilol OR celiprolol OR cetamolol OR chlortalidone OR cloranolol OR cyanoiodopindolol OR cyanopindolol OR deacetylmetipranolol OR diacetolol OR dihydroalprenolol OR dilevalol OR epanolol OR esmolol OR exaprolol OR falintolol OR flestolol OR flusoxolol OR hydroxybenzylpindolol OR hydroxycarteolol OR hydroxymetoprolol OR indenolol OR iodocyanopindolol OR iodopindolol OR labetalol OR landiolol OR levobunolol OR levomoprolol OR medroxalol OR mepindolol OR methylthiopropranolol OR metipranolol OR metoprolol OR moprolol OR nadolol OR oxprenolol OR penbutolol OR pindolol OR nadolol OR nebivolol OR nifenalol OR nipradilol OR oxprenolol OR pafenolol OR pamatolol OR penbutolol OR pindolol OR practolol OR primidolol OR prizidilol OR procinolol OR pronethalol OR propranolol OR proxodolol OR ridazolol OR soquinolol OR sotalol OR spirendolol OR talinolol OR tertatolol OR tienoxolol OR tilisolol OR timolol OR tolamolol OR toliprolol OR tribendilol OR xibenolol))
Search (Calcium channel blockers[mh] OR amlodipine[mh] OR Diltiazem[mh] OR Felodipine[mh] OR Isradipine[mh] OR Nicardipine[mh] OR Nifedipine[mh] OR Nisoldipine[mh] OR Verapamil[mh] OR Calcium Channel Blockers [Pharmacological Action] OR Calcium channel block*[tiab] OR Calcium Channel Antagon*[tiab] OR CCB[tiab] OR Exogenous Calcium Inhibit*[tiab] OR Exogenous Calcium Antagon*[tiab] OR Exogenous Calcium Block*[tiab] OR Calcium Antagon*[tiab] OR amlodipine OR amrinone OR aranidipine OR Azelnidipine or barnidipine or bencyclane or benidipine or bepridil OR clevidipine OR cilnidipine or cinnarizine or clentiazem or conotoxin* OR darodipine OR Diltiazem or efonidipine or elgodipine or etafenone or fantofarone OR Felodipine or fendiline or flunarizine or gallopamil OR Isradipine OR lacidipine OR lercanidipine or lidoflazine or lomerizine OR manidipine OR mibefradil or Nicardipine OR Nifedipine OR niguldipine or nilvadipine or nimodipine or Nisoldipine OR nitrendipine or perhexiline or prandipine OR prenylamine or semotiadil or terodiline or tiapamil OR Verapamil)
Search (Sodium Chloride Symporter Inhibitors[mh] OR bendroflumethiazide[mh] OR Benzothiadiazines[mh] OR Chlorothiazide[mh] OR chlorthalidone[mh] OR cyclopenthiazide[mh] OR hydrochlorothiazide[mh] OR hydroflumethiazide[mh] OR indapamide[mh] OR methyclothiazide[mh] OR metolazone[mh] OR polythiazide[mh] OR trichlormethiazide[mh] OR xipamide[mh] OR Sodium Chloride Symporter Inhibitors [Pharmacological Action] OR Sodium Chloride Symporter Inhibit*[tiab] OR sodium chloride cotransporter inhibit*[tiab] OR sodium chloride co-transporter inhibit*[tiab] OR Thiazide*[tiab] OR benzothiadiazine[tiab] OR benzo-thiadiazine[tiab] OR thiazide-like[tiab] OR bendroflumethiazide OR clofenamide OR clopamide OR Chlorothiazide OR chlorthalidone OR chlortalidone OR cyclopenthiazide OR cyclothiazide OR fenquizone OR hydrochlorothiazide OR hydroflumethiazide OR indapamide OR medfruside OR methyclothiazide OR metolazone OR polythiazide OR quinethazone OR trichlormethiazide OR xipamide)

Search (\#5 AND (\#6 OR \#7 OR \#8 OR \#9))
Search (\#6 AND (\#7 OR \#8 OR \#9))
Search (\#7 AND (\#8 OR \# 9))
Search (\#8 AND \#9)

Thiazide \& thiazide-like diuretics

ACE AND (ARB or BB or
Calcium OR Thiazide)
Calcium channel blockers

RB AND (BB or calcium or thiazide)
Beta Blockers AND (calcium or thiazide)
Calcium Channel Blockers and Diuretics

| Search (\#10 OR \#11 OR \#12 OR \#13) |
| :--- | :--- |
| Search (\#14 AND \#3 AND \#4) |
| Search (\#15 AND eng[la] NOT (animals[mh] NOT human[mh])) |
| Search (\#16 NOT (review[pt] OR review[ti] OR comment[pt] OR editorial[pt] OR meta-analysis[pt] OR meta-analysis[ti] OR letter[pt] OR <br> in vitro techniques[mh] OR guideline[pt] OR case reports[pt] OR case report[ti] OR news[pt] NOT ((review[pt] AND clinical trial[pt]) OR <br> (meta-analysis[pt] AND clinical trial[pt]) OR (case reports[pt] AND (clinical trial[pt] OR series[tiab]))))) |

## Embase Search

## exp hypertension/

(hypertension or hypertensive).ti,ab.
Blood pressure.ti.
1 or 2 or 3
exp dipeptidyl carboxypeptidase inhibitor/
(angiotensin converting enzyme inhibit\$ or angiotensin converting enzyme antagon\$ or acei or ace inhibit\$ or kininase II antagon\$ or kininase II inhibit\$ or angiotensin I converting enzyme inhibit\$ or angiotensin I converting enzyme antagon\$ or dipeptidyl
carboxypeptidase inhibit\$).ti,ab.
(alacepril or altiopril or ancovenin or benazepril or benazeprilat or captopril or ceranapril or ceronapril or cilazapril or
deacetylalacepril or delapril or derapril or enalapril or enalaprilat or epicaptopril or fasidotril or fosinopril or gemopatrilat or idrapril or imidapril or indolapril or libenzapril or Lisinopril or moexipril or moveltipril or omapatrilat or pentopril or perindopril or pivopril or quinapril or Ramipril or rentiapril or saralasin or s nitrosocaptopril or spirapril or temocapril or teprotide or utibapril or zabicipril or trandolapril or zofenopril).ti,ab.
5 or 6 or 7
exp Angiotensin Receptor Antagonist/ or Saralasin/
(angiotensin receptor antagon\$ or angiotensin receptor block\$ or angiotensin II type 1 receptor block\$ or angiotensin II type 1 receptor antagon\$ or angiotensin II type 2 receptor block\$ or angiotensin II type 2 receptor antagon\$ or angiotensin II receptor antagon\$ or angiotensin II receptor block\$ or sartanOR sartansOR arbs or arb).ti,ab.
(Abitesartan or Azilsartan or candesartan or elisartan or embusartan or eprosartan or forasartan or irbesartan or KT3-671 or losartan or milfasartan or olmesartan or saralasin or saprisartan or tasosartan or telmisartan or tasosartan or valsartan or zolasartan).ti,ab.

9 or 10 or 11
exp beta adrenergic receptor blocking agent/
(adrenergic beta antagon\$ or adrenergic beta 1 receptor antagon\$ or adrenergic beta 2 receptor antagon\$ or adrenergic beta 3 receptor antagon\$ or beta adrenergic receptor block\$ or beta adrenergic block\$ or adrenergic beta receptor block\$ or beta atagon\$ or beta

Beta Blockers
(acebutolol or adimolol or afurolol or alprenolol or amosulalol or arotinolol or atenolol or befunolol or betaxolol or bevantolol or bisoprolol or bopindolol or bornaprolol or brefanolol or bucindolol or bucumolol or bufetolol or bufuralol or bunitrolol or bunolol or bupranolol or butofilolol or butoxamine or carazolol or carteolol or carvedilol or celiprolol or cetamolol or chlortalidone or cloranolol or cyanoiodopindolol or cyanopindolol or deacetylmetipranolol or diacetolol or dihydroalprenolol or dilevalol or epanolol or esmolol or exaprolol or falintolol or flestolol or flusoxolol or hydroxybenzylpindolol or hydroxycarteolol or hydroxymetoprolol or indenolol or iodocyanopindolol or iodopindolol or labetalol or landiolol or levobunolol or levomoprolol or medroxalol or mepindolol or methylthiopropranolol or metipranolol or metoprolol or moprolol or nadolol or oxprenolol or penbutolol or pindolol or nadolol or nebivolol or nifenalol or nipradilol or oxprenolol or pafenolol or pamatolol or penbutolol or pindolol or practolol or primidolol or prizidilol or procinolol or pronethalol or propranolol or proxodolol or ridazolol or soquinolol or sotalol or spirendolol or talinolol or tertatolol or tienoxolol or tilisolol or timolol or tolamolol or toliprolol or tribendilol or xibenolol).ti,ab.
13 or 14 or 15
exp calcium channel blocking agent/
(Calcium channel block\$ or Calcium Channel Antagon\$ or CCB\$ or Exogenous Calcium Inhibit\$ or Exogenous Calcium Antagon\$ or Exogenous Calcium Block\$ or Calcium Antagon\$).ti,ab.
(amlodipine or amrinone or aranidipine or Azelnidipine or barnidipine or bencyclane or benidipine or bepridil or clevidipine or cilnidipine or cinnarizine or clentiazem or conotoxin* or darodipine or Diltiazem or efonidipine or elgodipine or etafenone or fantofarone or Felodipine or fendiline or flunarizine or gallopamil or Isradipine or lacidipine or lercanidipine or lidoflazine or lomerizine or manidipine or mibefradil or Nicardipine or Nifedipine or niguldipine or nilvadipine or nimodipine or Nisoldipine or nitrendipine or perhexiline or prandipine or prenylamine or semotiadil or terodiline or tiapamil or Verapamil).ti,ab.
17 or 18 or 19
exp thiazide diuretic agent/ or Benzothiadiazine derivative/ or indapamide/
(Sodium Chloride Symporter Inhibit\$ or sodium chloride cotransporter inhibit\$ or sodium chloride co-transporter inhibit\$ or Thiazide\$ or benzothiadiazine or benzo-thiadiazine or thiazide-like).ti,ab.
(bendroflumethiazide or clofenamide or clopamide or Chlorothiazide or chlorthalidone or chlortalidone or cyclopenthiazide or cyclothiazide or fenquizone or hydrochlorothiazide or hydroflumethiazide or indapamide or mefruside or methyclothiazide or metolazone or polythiazide or quinethazone or trichlormethiazide or xipamide).ti,ab.
21 or 22 or 23
8 and (12 or 16 or 20 or 24)
12 and ( 16 or 20 or 24 )
16 and (20 or 24)
20 and 24
25 or 26 or 27 or 28
Randomized controlled trial/ or Randomization/ or Single blind procedure/ or Double blind procedure/ or Crossover procedure/ or
Placebo/
(Randomi?ed controlled trial\$ or Rct or Random allocation or Randomly allocated or Allocated randomly or Single blind\$ or Double blind\$ or Placebo\$).tw.

Thiazide \& thiazide-like diuretics

ACE AND (ARB or BB or Calcium OR Thiazide)

ARB AND (BB or calcium or thiazide)
Beta Blockers AND (calcium or thiazide)
Calcium Channel Blockers and Diuretics
All drug pairings together

Randomized Trials

| 32 | (allocated adj2 random).tw. |  |
| :--- | :--- | :--- |
| 33 | ((treble or triple) adj blind\$).tw. |  |
| 34 | 30 or 31 or 32 or 33 |  |
| 35 | Case study/ or Abstract report/ or letter/ | Remove case reports |
| 36 | Case report.tw. |  |
| 37 | 35 or 36 | Htn + drug pairings + randomized |
| 38 | 34 not 37 | Remove animal studies and non- |
| 39 | 4 and 29 and 38 | trial publications |
| 40 | limit 39 to (human and english language and article) |  |

Table 3.1.1 PICO(TSS) Framework

|  | Inclusion Criteria | Exclusion criteria |
| :---: | :---: | :---: |
| Participants/ population | Adults (>=18 years) with Primary Hypertension or Hypertension due to Chronic Kidney Disease | Adults with secondary hypertension (other than hypertension caused by CKD) |
| Interventions/ exposure | Used as first-line therapy for hypertension: <br> - Thiazide and thiazide-like diuretics <br> - Angiotensin converting enzyme (ACE) inhibitors <br> - Angiotensin Receptor Blockers (ARB) <br> - Calcium Channel Blockers (CCB) <br> - Beta-Blockers | - Central Adrenergic Agonists <br> - Direct Vasodilators <br> - Alpha-Receptor Blockers <br> - Mineralocorticoid Receptor Antagonists <br> - Renin Inhibitors <br> - 2nd line therapy <br> - Interventions not being used to treat hypertension/high blood pressure |
| Comparators/ control | All above in scope interventions as long as representative of a different class than intervention | - Central Adrenergic Agonists <br> - Direct Vasodilators <br> - Alpha-Receptor Blockers <br> - Mineralocorticoid Receptor Antagonists <br> - Renin Inhibitors <br> - Combinations of a mix of classes <br> - Comparison of drugs within the same class |
| Outcomes | - Mortality <br> o All-Cause <br> o Cardiovascular <br> - Heart Failure <br> - Stroke <br> - Composite CVD events <br> - Myocardial Infarction (MI) <br> - Ruptured Aortic Aneurysm <br> - Coronary Revascularization <br> - Peripheral Revascularization <br> - End-Stage Renal Disease (ESRD) <br> - Doubling of Creatinine <br> - Halving of eGFR <br> - Cognitive Impairment <br> - Dementia <br> o Total Withdrawals from study <br> o Withdrawals from study due to adverse events <br> o Hypotension <br> o Electrolyte abnormalities <br> o Angioedema <br> o Cough <br> o Adverse events resulting in intervention <br> - Hypotension-related hospitalizations, ED or clinic visits | All other outcomes |

- AEs resulting in discontinuation of medication
- Achieved mean level of BP change
- Proportion of patients achieving a target blood pressure
- of hypertension
- Dysglycemia including development of new-onset DM

| Timing (of <br> outcomes) | $\geq 48$ weeks of follow-up | $<48$ weeks of follow-up |
| :--- | :--- | :--- |
| Setting/context | Any | NA |
| Study design | Randomized Controlled Trials | Observational Studies |
| Additional criteria | $\geq 100$ randomized patients or $>=400$ patient-years of follow-up | $<100$ randomized patients or $\geq 400$ patient-years of follow-up |

Figure 3.1 Network of clinical trials of antihypertensive drug classes in which all-cause mortality was reported ( $\mathrm{N}=40$ ).

*The trials included in each pair-wise comparison are labeled above the arrow. Summary of relative risk (RR) and 95\% CIs for the direct comparisons are shown below the arrow. For each pair-wise comparison, the line starts at the reference group and points towards the comparison group. Thus, the arrowhead points to a class of antihypertensive drugs for which a higher RR would signify an increased risk of mortality.

Figure 3.2 Network of clinical trials of antihypertensive drug classes in which CV mortality was reported ( $\mathrm{N}=\mathbf{2 5}$ ) *

*. *The trials included in each pair-wise comparison are labeled above the arrow. Summary of relative risk (RR) and 95\% CIs for the direct comparisons are shown below the arrow. For each pairwise comparison, the line starts at the reference group and points towards the comparison group. Thus, the arrowhead points to a class of antihypertensive drugs for which a higher RR would signify an increased risk of CV mortality.

Figure 3.3 Network of clinical trials of antihypertensive drug classes in which myocardial infarction was reported ( $\mathrm{N}=\mathbf{2 9 \text { ). }}$

*The trials included in each pair-wise comparison are labeled above the arrow. Summary of relative risk (RR) and 95\% CIs for the direct comparisons are shown below the arrow. For each pair-wise comparison, the line starts at the reference group and points towards the comparison group. Thus, the arrowhead points to a class of antihypertensive drugs for which a higher RR would signify an increased risk of myocardial infarction.

Figure 3.4. Network of clinical trials of antihypertensive drug classes in which heart failure was reported ( $\mathrm{N}=\mathbf{2 1}$ ).


* The trials included in each pair-wise comparison are labeled above the arrow. Summary of relative risk (RR) and 95\% CIs for the direct comparisons are shown below the arrow. For each pair-wise comparison, the line starts at the reference group and points towards the comparison group. Thus, the arrowhead points to a class of antihypertensive drugs for which a higher RR would signify an increased risk of heart failure.

Figure 3.5 Network of clinical trials of antihypertensive drug classes in which fatal and non-fatal stroke outcomes were reported ( $\mathrm{N}=30$ )*

*The trials included in each pair-wise comparison are labeled above the arrow. Summary of relative risk (RR) and 95\% CIs for the direct comparisons are shown below the arrow. For each pair-wise comparison, the line starts at the reference group and points towards the comparison group. Thus, the arrowhead points to a class of antihypertensive drugs for which a higher RR would signify an increased risk of stroke outcomes. † The dash represents the relative risk for THZ and ARB, which was extreme due to zeros. The value could not be calculated based on a direct comparison.

Figure 3.6 Network of clinical trials of antihypertensive drug classes in which major CV event outcomes were reported ( $\mathrm{N}=17$ ) *

*The trials included in each pair-wise comparison are labeled above the arrow. Summary of relative risk (RR) and 95\% CIs for the direct comparisons are shown below the arrow. For each pair-wise comparison, the line starts at the reference group and points towards the comparison group. Thus, the arrowhead points to a class of antihypertensive drugs for which a higher RR would signify an increased risk of major CV events.

Figure 3.7 Network of clinical trials of antihypertensive drug classes in which MACE was reported ( $\mathrm{N}=3$ ). *


 increased risk of MACE.

Figure 3.8. Network of clinical trials of antihypertensive drug classes in which renal event outcomes were reported ( $\mathrm{N}=5$ ) *

*The trials included in each pair-wise comparison are labeled above the arrow. Summary of relative risk (RR) and 95\% CIs for the direct comparisons are shown below the arrow. For each pair-wise comparison, the line starts at the reference group and points towards the comparison group. Thus, the arrowhead points to a class of antihypertensive drugs for which a higher RR would signify an increased risk of renal outcomes.

Table 3.2 Characteristics of studies

| Acronym | Author | Year | Patient status /condition | Tx Compariso n |  | Rando m-ized | Age <br> (yrs) | \% Fema le | \% Caucas ian | \% <br> Africa <br> n- <br> Ameri <br> can | $\begin{aligned} & \hline \% \\ & \text { Asia } \end{aligned}$ $\mathbf{n}$ | Race, <br> Other | \% Hispan | BMI | $\begin{aligned} & \hline \text { \% } \\ & \text { DM } \end{aligned}$ | $\begin{aligned} & \mathrm{\%} \\ & \text { CK } \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & \text { \% } \\ & \text { CHD } \end{aligned}$ | \% <br> Cerebrov ascular Disease | $\begin{aligned} & \text { \% } \\ & \text { Prior } \\ & \text { MI } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AASK | $\begin{aligned} & \text { Wright Jr. } \\ & \text { J.T. }{ }^{(45)} \end{aligned}$ | 2002 | CKD, NonDiabetic | ACE vs. CCB vs. BB | 6.4 | 1094 | 54.6 | 38.8 | 0 | 100 | 0 | 0 | NR | NR | 0 | 100 | NR | NR | NR |
| ABCD | $\underset{(66,67)}{\text { Estacio RO. }}$ | 1998 | Diabetic | $\begin{aligned} & \text { CCB vs. } \\ & \text { ACE } \\ & \hline \end{aligned}$ | 5.0 | 470 | 57.5 | 32.6 | 83.6 | 13.8 | 0 | 2.6 | 66.8 | 31.6 | 100 | NR | NR | NR | 7 |
| ALLHAT | $\begin{aligned} & \text { ALLHAT } \\ & \text { Res Grp }{ }^{(68)} \end{aligned}$ | 2002 | Hypertensive | THZ vs. CCB vs. ACE | 8.0 | 33357 | 67 | 47.0 | 59.7 | 35.4 | 0 | 4.9 | 19 | 29.8 | 36 | NR | 25.2 | NR | NR |
| ANBP2 | $\begin{aligned} & \text { Wing LM. } \\ & (69) \end{aligned}$ | 2003 | Hypertensive | ACE vs. THZ | 4.1 | 6083 | 71.9 | 51.0 | 95 | NR | NR | NR | NR | 27 | 7 | NR | 8 | 5 | NR |
| ASCOT- BPLA | Dahlof B. ${ }^{(70)}$ | 2005 | Hypertensive | $\begin{aligned} & \text { CCB vs. } \\ & \text { BB } \\ & \hline \end{aligned}$ | 5.5 | 19257 | 63 | 23.4 | 95.3 | NR | NR | NR | NR | 28.7 | 26.7 | NR | NR | NR | 0 |
| BENEDICT | $\begin{aligned} & \text { Ruggenenti } \\ & \mathrm{P}^{(71)} \end{aligned}$ | 2004 | DM | CCB vs. ACE | 3.6 | 1209 | 62.1 | 46.9 | NR | NR | NR | NR | NR | 29.3 | 100 | NR | NR | NR | NR |
| CORD IB | Spinar J ${ }^{(72)}$ | 2009 | Hypertensive | ACE vs. ARB | 1.0 | 3813 | 60.5 | 50.5 | NR | NR | NR | NR | NR | NR | 29.3 | NR | NR | NR | 11.7 |
| DETAIL | $\underset{(73)}{ } \text { Barnett AH }$ | 2004 | DM | ARB vs. <br> ACE | 5.0 | 250 | 60.6 | 27.2 | 98.4 | NR | NR | NR | NR | 30.7 | 100 | NR | NR | NR | NR |
| ELSA | $\begin{aligned} & \text { Zanchetti A } \\ & (74) \end{aligned}$ | 2002 | Hypertensive | $\begin{aligned} & \text { BB vs. } \\ & \text { CCB } \end{aligned}$ | 4.1 | 2334 | 56 | 39.4 | 98.2 | NR | NR | NR | NR | 27.2 | NR | NR | NR | NR | NR |
| ELVERA | Terpstra W.F. ${ }^{(75)}$ | 2004 | Non-DM | $\begin{aligned} & \text { CCB vs. } \\ & \text { ACE } \end{aligned}$ | 2.0 | 166 | 67 | 44.6 | NR | NR | NR | NR | NR | 28 | 0 | NR | 0 | NR | NR |
| ESPIRAL | Marin $\mathrm{R}^{(76)}$ | 2001 | Non-DM | ACE vs. CCB | 3.1 | 241 | 56 | 41.0 | NR | NR | NR | NR | NR | NR | 0 | NR | NR | NR | NR |
| FACET | Tatti P. ${ }^{(77)}$ | 1998 | DM | ACE vs. CCB | 3.5 | 380 | 63.1 | 40.5 | NR | NR | NR | NR | NR | 30.6 | 100 | NR | 0 | 0* | NR |
| HAPPHY | Wilhelmsen $L^{(78)}$ | 1987 | Non-DM | THZ vs. BB | 3.8 | 6569 | 52.2 | 0 | 99 | NR | NR | NR | NR | 27.2 | 0 | NR | NR | 0* | 0 |
| HYVETPilot | Bulpitt CJ ${ }^{(79)}$ | 2003 | Elderly | THZ vs. ACE | 1.1 | 1283 | 83.8 | $63.5{ }^{\text {s }}$ | NR | NR | NR | NR | NR | $\begin{aligned} & 25.4 \end{aligned}$ | NR | NR | NR | 4.5* | 3 |
| IDNT | Lewis EJ ${ }^{(80)}$ | 2001 | DM | $\begin{aligned} & \text { ARB vs. } \\ & \text { CCB } \end{aligned}$ | 2.6 | 1715 | $59.2{ }^{\text {\$ }}$ | $33.5{ }^{\text {s }}$ | $72.2{ }^{\text {s }}$ | $13.1{ }^{\text {s }}$ | $5.1{ }^{\text {\$ }}$ | $4.7{ }^{\text {s }}$ | $5^{\$}$ | $31^{\text {s }}$ | 100 | NR | NR | NR | NR |
| JMIC-B | Yui Y ${ }^{(81, ~ 82)}$ | 2004 | Hypertensive | CCB vs. <br> ACE | 3.0 | 1650 | 65 | 31.2 | NR | NR | NR | NR | NR | $\begin{aligned} & \hline 24.0 \\ & 5 \\ & \hline \end{aligned}$ | 22.5 | NR | NR | NR | 2.5 |
| LIFE | Dahlof B. ${ }^{(83)}$ | 2002 | LV <br> Hypertrophy | $\begin{aligned} & \text { ARB vs. } \\ & \text { BB } \\ & \hline \end{aligned}$ | 4.8 | 9193 | 66.9 | 54 | 92 | 6 | 0.5 | 0.2 | 1 | 28 | 13 | NR | 16 | 8 | NR |
| LIVE | Gosse P ${ }^{(84)}$ | 2000 | Non-DM | THZ vs. ACE | 1.0 | 505 | 54.5 | 43.6 | 77.8 | NR | NR | NR | NR | 26.7 | 0 | NR | 0 | NR | NR |
| MOSES | $\begin{aligned} & \text { Schrader J } \\ & (85) \end{aligned}$ | 2005 | Hypertensive | $\begin{aligned} & \text { ARB vs. } \\ & \text { CCB } \end{aligned}$ | 4.0 | 1405 | 67.9 | 45.8 | NR | NR | NR | NR | NR | 27.6 | 36.8 | NR | 26.3 | 61* | 8.1 |
| MRC | MRC <br> Working <br> Party ${ }^{(86)}$ | 1985 | Non-DM | THZ vs. BB | 5.5 | 17354 | 51.9 | 47.9 | NR | NR | NR | NR | NR | NR | 0 | NR | NR | NR | NR |
| MRC Old | MRC <br> Working <br> Party ${ }^{(87)}$ | 1992 | Elderly | $\begin{aligned} & \text { THZ vs. } \\ & \text { BB } \end{aligned}$ | 5.8 | 4396 | NR | $58^{\text {s }}$ | NR |
| INSIGHT | $\begin{aligned} & \text { Brown MJ } \\ & (88) \end{aligned}$ | 2000 | Hypertensive | $\begin{aligned} & \hline \text { CCB vs } \\ & \text { THZ } \\ & \hline \end{aligned}$ | 3.5 | 6321 | 65 | 53.7 | NR | NR | NR | NR | NR | 28.2 | 20.6 | NR | $6.4{ }^{\text { }}$ | NR | $6.1^{\text {s }}$ |


| Acronym | Author | Year | Patient status /condition | Tx Compariso n | Follow -up (years) | Rando m-ized | Age (yrs) | \% Fema | \% Caucas ian | \% <br> Africa <br> n- <br> Ameri <br> can | $\begin{aligned} & \hline \% \\ & \text { Asia } \end{aligned}$ $\mathbf{n}$ | \% <br> Race, <br> Other | \% Hispan | BMI | $\begin{aligned} & \hline \text { \% } \\ & \text { DM } \end{aligned}$ | $\begin{aligned} & \hline \text { \% } \\ & \text { CK } \\ & \text { D } \end{aligned}$ | $\begin{aligned} & \hline \text { \% } \\ & \text { CHD } \end{aligned}$ | \% <br> Cerebrov <br> ascular <br> Disease | $\begin{aligned} & \hline \text { \% } \\ & \text { Prior } \\ & \text { MI } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fogari $\mathrm{R}^{(89)}$ | 2002 | DM | $\begin{aligned} & \text { CCB vs. } \\ & \text { ACE } \\ & \hline \end{aligned}$ | 4.1 | 309 | $62.8{ }^{\text {\$ }}$ | 43.4 | NR | NR | NR | NR | NR | 27.7 | 100 | NR | 0* | 0 | NR |
|  | Rosendorff C ${ }^{(90)}$ | 2009 | LV Hypertrophy | ARB vs ССВ | 1.1 | 102 | 63.9 | 1 | 10.8 | 71.6 | 0 | 2.9 | 14.7 | NR | 16.7 | NR | NR | 5.9* | 3.9 |
|  | Cacciapuoti $\mathrm{F}^{\text {(91) }}$ | 1993 | Non-DM | CCB vs. ACE vs. BB | 5.0 | 237 | 48 | 29.1 | NR | NR | NR | NR | NR | NR | 0 | NR | 0 | NR | NR |
|  | $\underset{(92)}{7 \text { Zucchelli P }}$ | 1995 | Non-DM | ACE vs. CCB | 4.0 | 121 | 55 | 40.5 | NR | NR | NR | NR | NR | NR | 0 | NR | NR | NR | NR |
|  | Yilmaz R ${ }^{(93)}$ | 2010 | End Stage <br> Renal <br> Disease | ACE vs. CCB | 1.0 | 112 | 51.5 | 46.4 | NR | NR | NR | NR | NR | 22.6 | NR | NR | 0 | NR | 0 |
|  | $\underset{(94)}{\text { Agarwal R }}$ | 2014 | End Stage <br> Renal <br> Disease, LV <br> Hypertrophy | BB vs. ACE | 1.0 | 200 | 52.7 | 34.5 | NR | 86 | NR | NR | 0.5 | 27.9 | NR | NR | 26.5 | 16.5 | NR |
|  | Omvik P ${ }^{(95)}$ | 1993 | Hypertensive | $\begin{aligned} & \text { CCB vs. } \\ & \text { ACE } \end{aligned}$ | 1.1 | 461 | 54.4 | 48.2 | NR |
|  | $\underset{(96)}{\text { Bremner AD }}$ | 1997 | Hypertensive | $\begin{aligned} & \text { ARB vs. } \\ & \text { ACE } \\ & \hline \end{aligned}$ | 1.0 | 501 | 71.8 | 55.4 | 99 | 0.4 | 0.6 | 0.4 | NR |
|  | Sareli P ${ }^{(97)}$ | 2001 | AfricanAmerican | CCB_NIF vs. CCB_VER vs. THZ vs. ACE | 1.1 | 409 | 53.3 | 77.0 | 0 | 100 | 0 | 0 | NR | 31.2 | NR | NR | NR | NR | NR |
| NESTOR | Marre <br> Michel ${ }^{\text {(98) }}$ | 2004 | DM | THZ vs. <br> ACE | 1.1 | 570 | 60 | 36 | 85.6 | 4.4 | 2.5 | 8.6 | NR | 29.5 | 100 | NR | NR | NR | NR |
| SHELL | $\underset{(99)}{\text { Malacco E }}$ | 2003 | Hypertensive | $\begin{aligned} & \text { THZ vs. } \\ & \text { CCB } \\ & \hline \end{aligned}$ | 5.0 | 1882 | 72.3 | 61.3 | NR | NR | NR | NR | NR | NR | 13.2 | NR | NR | NR | NR |
| $\begin{aligned} & \text { STOP-HTN- } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Hansson L } \\ & (100) \end{aligned}$ | 1999 | Hypertensive | ACE vs. ССВ | 5.0 | 6614 | 76 | 66.8 | NR | NR | NR | NR | NR | 26.7 | 10.9 | NR | 8 | 3.9 | 3.1 |
| UKPDS 39 | $\begin{aligned} & \hline \text { UKPDS } 39 \\ & (101) \\ & \hline \end{aligned}$ | 1998 | DM | ACE vs. BB | 9.0 | 1148 | 56 | 45.0 | 85.9 | 8 | 5 | 1 | NR | 29.8 | 100 | NR | NR | NR | NR |
| VALUE | Julius S ${ }^{(102)}$ | 2004 | Hypertensive | $\begin{aligned} & \text { ARB vs. } \\ & \text { CCB } \end{aligned}$ | 6.0 | 15245 | 67.2 | 53 | 89.3 | 4.2 | 3.5 | 3 | NR | 28.6 | NR | NR | 45.8 | 19.8* | 4.5 |
| VART | $\underset{(103)}{\text { Narumi H }}$ | 2011 | Asian | $\begin{aligned} & \hline \text { ARB vs. } \\ & \text { CCB } \\ & \hline \end{aligned}$ | NR | 1021 | 60 | 42.8 | 0 | 0 | 100 | 0 | NR | 24.5 | 8.1 | NR | 3.4 | 0 | NR |
| VHAS | $\begin{aligned} & \text { Rosei E.A. } \\ & (104) \end{aligned}$ | 1997 | Non-DM | $\begin{aligned} & \text { THZ vs. } \\ & \text { CCB } \end{aligned}$ | 2.1 | 1414 | 53.2 | 51 | NR | NR | NR | NR | NR | 27.1 | 0 | NR | NR | NR | NR |
| MIDAS | $\begin{aligned} & \hline \text { Borhani } \\ & \text { N.O. }{ }^{(105)} \\ & \hline \end{aligned}$ | 1996 | Non-DM | $\begin{aligned} & \text { CCB vs. } \\ & \text { THZ } \\ & \hline \end{aligned}$ | 3.2 | 883 | 58.5 | 22.2 | 72 | 22 | 0 | 6 | NR | 27.8 | 0 | NR | NR | NR | 1.9 |
| ATTEST | Katayama S (106) | 2008 | DM | $\begin{aligned} & \hline \text { CCB vs. } \\ & \text { ACE } \\ & \hline \end{aligned}$ | 1.2 | 223 | 59.3 | 31.4 | NR | NR | NR | NR | NR | $\begin{aligned} & 26.1 \\ & 4 \\ & \hline \end{aligned}$ | 100 | NR | NR | NR | 0 |
| SHELL | $\underset{(99)}{\text { Malacco E }}$ | 2003 | Hypertensive | $\begin{aligned} & \text { THZ vs. } \\ & \text { CCB } \end{aligned}$ | 5.0 | 1882 | 72.3 | 61.3 | NR | NR | NR | NR | NR | NR | 13.2 | NR | NR | NR | NR |

NR= not reported, tx=treatment, BMI=body mass index, DM=diabetes mellitus, CKD=chronic kidney disease, CHD=coronary heart disease
\$ Study reported additional groups that were not in scope. Data was calculated using interventions of interest.

* Stroke was used as surrogate for Cerebrovascular Disease

Table 3.3. All-Cause mortality events by study and antihypertensive class

| Study Acronym | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| ASCOT-BPLA | Dahlof B. ${ }^{(70)}$ | 2005 | 9,639 | 738 (8\%) | $\begin{aligned} & \hline 9,6 \\ & 18 \\ & \hline \end{aligned}$ | 820 (9\%) |  |  |  |  |  |  |
| ELSA | Zanchetti A ${ }^{(74)}$ | 2002 | 1,023 | 13 (1.1\%) | $\begin{aligned} & \hline 1,0 \\ & 12 \end{aligned}$ | 17 (1.5\%) |  |  |  |  |  |  |
| AASK | Wright Jr. J.T. ${ }^{(45)}$ | 2002 | 217 | 13 (6\%) | 441 | 38 (8.6\%) | 436 | 29 (6.7\%) |  |  |  |  |
| - | Cacciapuoti F ${ }^{(91)}$ | 1993 | 82 | 1 (1.2\%) | 79 | 0 (0\%) | 76 | 1 (1.3\%) |  |  |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 |  |  | 100 | 4 (4\%) | 100 | 4 (4\%) |  |  |  |  |
| ABCD | Estacio RO. ${ }^{(66,67)}$ | 1998 | 235 | 17 (7.2\%) |  |  | 235 | 13 (5.5\%) |  |  |  |  |
| - | Fogari R ${ }^{(89)}$ | 2002 | 103 | 4 (3.9\%) |  |  | 102 | 3 (2.9\%) |  |  |  |  |
| STOP-HTN-2 | Hansson L ${ }^{(100)}$ | 1999 | 2,196 | 362 (16.5\%) |  |  | 2,205 | 380 (17.2\%) |  |  |  |  |
| ATTEST | Katayama S ${ }^{(106)}$ | 2008 | 107 | 0 (0\%) |  |  | 103 | 0 (0\%) |  |  |  |  |
| ESPIRAL | Marin $\mathrm{R}^{(76)}$ | 2001 | 112 | 6 (5.4\%) |  |  | 129 | 4 (3.1\%) |  |  |  |  |
| - | Omvik P ${ }^{(95)}$ | 1993 | 231 | 1 (0.4\%) |  |  | 230 | 1 (0.4\%) |  |  |  |  |
| BENEDICT | Ruggenenti $\mathrm{P}^{(71)}$ | 2004 | 303 | 2 (0.7\%) |  |  | 301 | 3 (1\%) |  |  |  |  |
| FACET | Tatti P. ${ }^{(77)}$ | 1998 | 191 | 5 (2.6\%) |  |  | 189 | 4 (2.1\%) |  |  |  |  |
| ELVERA | Terpstra W.F. ${ }^{(75)}$ | 2004 | 81 | 1 (1.2\%) |  |  | 85 | 0 (0\%) |  |  |  |  |
| - | Yilmaz R ${ }^{(93)}$ | 2010 | 47 | 1 (2.4\%) |  |  | 45 | 0 (0\%) |  |  |  |  |
| JMIC-B | Yui Y ${ }^{(81, ~ 82)}$ | 2004 | 828 | 12 (1.4\%) |  |  | 822 | 15 (1.8\%) |  |  |  |  |
| - | Zucchelli P ${ }^{(92)}$ | 1995 | 61 | 0 (0\%) |  |  | 60 | 1 (1.7\%) |  |  |  |  |
| ALLHAT | ALLHAT Res Grp ${ }^{(68)}$ | 2002 | 9,048 | 1,256 (13.9\%) |  |  | 9,054 | $\begin{aligned} & 1,314 \\ & (14.5 \%) \\ & \hline \end{aligned}$ |  |  | 15,255 | $\begin{aligned} & 2,203 \\ & (14.4 \%) \\ & \hline \end{aligned}$ |
| - | Sareli P* (97) | 2001 | 233 | 0 (0\%) |  |  | 60 | 0 (0\%) |  |  | 58 | 1 (1.7\%) |
| VALUE | Julius S ${ }^{(102)}$ | 2004 | 7596 | 818 (10.8\%) |  |  |  |  | 7649 | 841 (11\%) |  |  |
| IDNT | Lewis EJ ${ }^{(80)}$ | 2001 | 567 | 83 (14.6\%) |  |  |  |  | 579 | 87 (15\%) |  |  |
| VART | Narumi H ${ }^{(103)}$ | 2011 | 511 | 21 (4.1\%) |  |  |  |  | 510 | 21 (4.1\%) |  |  |
| - | Rosendorff C ${ }^{(90)}$ | 2009 | 38 | 0 (0\%) |  |  |  |  | 36 | 0 (0\%) |  |  |
| MOSES | Schrader J ${ }^{\text {(85) }}$ | 2005 | 671 | 52 (7.7\%) |  |  |  |  | 681 | 57 (8.4\%) |  |  |
| MIDAS | Borhani N.O ${ }^{(105)}$ | 1996 | 442 | 8 (1.8\%) |  |  |  |  |  |  | 441 | 9 (2.1\%) |
| SHELL | Malacco E ${ }^{\text {(99) }}$ | 2003 | 942 | 145 (15.4\%) |  |  |  |  |  |  | 940 | 122 (13\%) |
| VHAS | Rosei E.A. ${ }^{(104)}$ | 1997 | 707 | 5 (0.7\%) |  |  |  |  |  |  | 707 | 4 (0.6\%) |
| UKPDS 39 | UKPDS 39 ${ }^{(101)}$ | 1998 |  |  | 358 | 59 (16.5\%) | 400 | 75 (18.8\%) |  |  |  |  |
| LIFE | Dahlof B. ${ }^{(83)}$ | 2002 |  |  | $\begin{aligned} & \hline 458 \\ & 8 \end{aligned}$ | 431 (9\%) |  |  | 4605 | 383 (8\%) |  |  |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.


Figure 3.9 Relative risks of all-cause mortality associated with first line antihypertensive medication classes compared to Thiazides


Figure 3.9.1 Pooled Network Relative risks associated with first line antihypertensive medication classes compared to THZ

Panel A: ARB vs THZ


Panel C: CCB vs THZ

| Outcome | RR (95\% CI) |  |  | Favors CCB |  | Favors THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All-Cause Mortality | 0.97 (0.90-1.10) |  |  |  |  |  |  |
| CV Mortality | 1.00 (0.86-1.20) |  |  |  |  |  |  |
| Myo cardial Infarction | 1.10 (0.89-1.60) |  |  |  |  |  | $\rightarrow$ |
| Heart Failure | 1.30 (1.00-1.60) |  |  |  |  |  |  |
| Stroke | 0.96 (0.83-1.20) |  |  |  |  |  |  |
| CV Composite | 1.10 (0.98-1.20) |  |  |  |  |  |  |
| Renal | 1.00 (0.46-2.50) |  |  |  |  |  |  |
|  | $\begin{array}{ll}-0.4 & -0.2\end{array}$ | 00.2 | 0.4 | 0.6 |  | 1.2 | . 4 |
|  |  |  |  | Relative Risk |  |  |  |

Panel B: BB vs THZ


## Panel D: ACE vs THZ



Figure 3.10 Pooled Network Relative risks of CV mortality associated with first line antihypertensive medication classes compared to THZ


Table 3.4 Relative Treatment Effect of the Pooled Network Comparisons Expressed as RR (95\% Credible Interval) of CV Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE | ARB | BB | CHZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ACE | ACE | $1.1(0.8,1.4)$ | $1.1(0.89,1.3)$ | $0.94(0.8,1.1)$ | $0.94(0.78,1.1)$ |
| ARB | $0.95(0.72,1.3)$ | ARB | $1.1(0.8,1.3)$ | $0.89(0.68,1.1)$ | $0.89(0.66,1.2)$ |
| BB | $0.9(0.77,1.1)$ | $0.95(0.76,1.3)$ | $\mathbf{B B}$ | $0.84(0.73,1)$ | $1(0.85,1.2)$ |
| CCB | $1.1(0.92,1.2)$ | $1.1(0.87,1.5)$ | $1.2(0.98,1.4)$ | CCB | $(1.2(0.98,1.4)$ |
| THZ | $1.1(0.92,1.3)$ | $1.1(0.87,1.5)$ | $1.2)$ | $1(0.86,1.2)$ | $\mathbf{T H Z}$ |

Figure 3.11. Relative risks of heart failure associated with first line antihypertensive medication classes compared to Thiazides


Figure 3.12. Relative Treatment Effects of Indirect Comparison Expressed as RR (95\% Credible Interval) of fatal and non-fatal stroke associated with first line antihypertensive medication classes compared to THZ


Table 3.5 Relative Treatment Effect of Pooled Network Comparisons Expressed as RR (95\% Credible Interval) of Stroke Associated with Antihypertensive Drug Class Comparisons

|  | ACE | BB | CCB | THZ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | ACE | ARB | $0.97(0.76,1.2)$ | $1.2(0.88,1.4)$ | $0.85(0.71,0.98)$ |
| ARB | $1(0.83,1.3)$ | ARB | $1.2(0.91,1.5)$ | $0.88(0.71,1.1)$ | $0.99(0.7,1)$ |
| BB | $0.86(0.71,1.1)$ | $0.84(0.68,1.1)$ | BB | $0.73(0.6,0.93)$ |  |
| CCB | $1.2(1,1.4)$ | $1.1(0.93,1.4)$ | $1.4(1.1,1.7)$ | CCB | $0.77(0.62,0.95)$ |
| THZ | $1.1(0.98,1.4)$ | $1.1(0.88,1.4)$ | $1.3(1.1,1.6)$ | $0.96(0.83,1.2)$ |  |

Figure 3.13 Relative Treatment Effects of Indirect Comparison Expressed as RR (95\% Credible Interval) of major CV events associated with first line antihypertensive medication classes compared to THZ


Table 3.6 Relative Treatment Effect of Pooled Network Comparisons Expressed as RR (95\% Credible Interval) of Major CV Events Associated with Antihypertensive Drug Class Comparisons

|  | ACE | ARB | BB | CCB | THZ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | ACE | $0.98(0.82,1.1)$ | $1.1(0.92,1.3)$ | $1(0.91,1.1)$ | $0.94(0.79,1)$ |
| ARB | $1(0.9,1.2)$ | ARB | $1.1(0.98,1.3)$ | $1(0.94,1.2)$ | $0.96(0.81,1.1)$ |
| BB | $0.9(0.8,1.1)$ | $0.88(0.78,1)$ | BB | $0.91(0.83,1.1)$ | $0.84(0.72,0.99)$ |
| CCB | $0.99(0.89,1.1)$ | $0.97(0.85,1.1)$ | $1.1(0.95,1.2)$ | CCB | $1.1(0.98,1.2)$ |
| THZ | $1.1(0.96,1.3)$ | $1(0.89,1.2)$ | $1.2(1,1.4)$ |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Table 3.7. All-Cause mortality events by study and antihypertensive class among Blacks

| Study Acronym | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| ALLHAT | Wright JT ${ }^{(107)}$ | 2005 | 3213 | 481 (15\%) |  |  | 3210 | 520 (16.2\%) |  |  | 5369 | 821 (15.3\%) |
| --- | Agarwal R ${ }^{(94)}$ | 2014 |  |  | 100 | 4 (4\%) | 100 | 4 (4\%) |  |  |  |  |
| AASK | Wright Jr. J.T. ${ }^{(45)}$ | 2002 | 217 | 13 (6\%) | 441 | 38 (8.6\%) | 436 | 29 (6.7\%) |  |  |  |  |
| --- | Sareli P ${ }^{\text {(97) }}$ | 2001 | 233 | 0 (0\%) |  |  | 60 | 0 (0\%) |  |  | 58 | 1 (1.7\%) |

Table 3.8 Cardiovascular mortality outcomes among Blacks by antihypertensive class and study

| Study <br> Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { Outcome } \\ \text { N(\%) } \\ \hline \end{gathered}$ | N | Outcome N (\%) |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 12 (2.8) | 217 | 7 (3.2) |  |  |  |  | 441 | 12 (2.7) |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 22 (8.1) |  |  | 263 | 15 (5.7) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 224 (7.0) | 3213 | 215 (6.7) |  |  | 5369 | 362 (6.7) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 3 (3.0) |  |  |  |  |  |  | 100 | 2 (2.0) |

Table 3.9 MI outcomes among Blacks by antihypertensive class and study

| Study <br> Acronym | Author | Year | $\begin{aligned} & \text { ACE } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \text { CCB } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \text { ARB } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | THZ N | Outcome N (\%) | $\begin{aligned} & \text { BB } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 13 (4.8) |  |  | 263 | 6 (2.3) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 260 (8.1) | 3213 | 243 (7.6) |  |  | 5369 | 400 (7.5) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 3 (3.0) |  |  |  |  |  |  | 100 | 2 (2.0) |

Table 3.10 CHF outcomes among Blacks by antihypertensive class and study

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcome N (\%) | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | Outcome N (\%) | N | $\begin{gathered} \text { Outcome } \\ \text { N(\%) } \\ \hline \end{gathered}$ | N | Outcome N(\%) |
| AASK | Norris ${ }^{(46)}$ | 2006 | 436 | 20 (4.5) |  |  |  |  |  |  | 441 | 22 (5.0) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 220 (6.8) | 3213 | 248 (7.7) |  |  | 5369 | 283 (5.3) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 10(10) |  |  |  |  |  |  | 100 | 5 (5) |

*note for Wright the direct comparison for CCB vs ACE was not included due to a difference in time periods for comparison

Table 3.11 Stroke outcomes among Blacks by antihypertensive class and study

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | Outcome N(\%) | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | Outcome N (\%) | N | Outcome N(\%) |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 23 (5.3) | 217 | 9 (4.1) |  |  |  |  | 441 | 23 (5.2) |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 24 (8.9) |  |  | 263 | 12 (4.6) |
| ALLHAT | Yamal ${ }^{(109)}$ | 2017 | 3210 | 214 (6.7) | 3213 | 146 (4.5) |  |  | 5369 | 260 (4.8) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 2 (2.0) |  |  |  |  |  |  | 100 | 2 (2.0) |

Table 3.12 composite event outcomes among Blacks by antihypertensive class and study

| Study <br> Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \text { N(\%) } \\ \hline \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \text { N(\%) } \\ \hline \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 20 (4.6) | 217 | 8 (3.7) |  |  |  |  | 441 | 22 (5.0) |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 46 (17.0) |  |  | 263 | 29 (11.0) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 444 (13.8) | 3213 | 407 (12.7) |  |  | 5369 | 655 (12.2) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 28 (28.0) |  |  |  |  |  |  | 100 | 16 (16.0) |

Figure 3.14. Pooled Network Relative risks among Blacks of All-Cause mortality associated with first line antihypertensive medication classes compared to THZ


Figure 3.15 Pooled Network Relative risks among Blacks of CV mortality associated with first line antihypertensive medication classes compared to THZ


Figure 3.16 Pooled Network Relative risks among Blacks of MI associated with first line antihypertensive medication classes compared to THZ


Figure 3.17. Pooled Network Relative risks among Blacks of CHF associated with first line antihypertensive medication classes compared to THZ


Figure 3. 18 Pooled Network Relative risks among Blacks of fatal or non-fatal stroke associated with first line antihypertensive medication classes compared to THZ


Figure 3.19 Pooled Network Relative risks among Blacks of CV events associated with first line antihypertensive medication classes compared to THZ


## ADDITIONAL TABLES NOT REFERENCED IN THE TEXT (BY OUTCOME) FOR PART 3: FIRST-LINE ANTIHYPERTENSIVE DRUG CLASS COMPARISONS IN ADULTS

## ALL-CAUSE MORTALITY OUTCOMES

Table 3.13 Relative Treatment Effect of Pairwise Comparisons Expressed as RR (95\% Credible Interval) of All-Cause Mortality Associated with Antihypertensive Drug Class Comparisons (read top to left)

|  | ACE | ARB | BB | CCB | THZ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | ACE | $0.97(0.86,1.1)$ | $1.1(0.96,1.2)$ | $0.96(0.88,1)$ | $0.98(0.9,1.1)$ |
| ARB | $1(0.92,1.2)$ | ARB | $1.1(0.99,1.2)$ | $0.98(0.9,1.1)$ | $1(0.9,1.1)$ |
| BB | $0.94(0.84,1)$ | $0.91(0.82,1)$ | BB | $0.9(0.82,0.97)$ | $0.92(0.83,1)$ |
| CCB | $1(0.97,1.1)$ | $1(0.93,1.1)$ | $1.1(1,1.2)$ | CCB | $1(0.95,1.1)$ |
| THZ | $1(0.95,1.1)$ | $0.99(0.88,1.1)$ | $1.1(0.98,1.2)$ | $0.97(0.9,1.1)$ | THZ |

Table 3.14 All-Cause mortality events by study and antihypertensive class among Blacks

| Study Acronym | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| ALLHAT | Wright JT ${ }^{(107)}$ | 2005 | 3213 | 481 (15\%) |  |  | 3210 | 520 (16.2\%) |  |  | 5369 | 821 (15.3\%) |
|  | Agarwal R ${ }^{(94)}$ | 2014 |  |  | 100 | 4 (4\%) | 100 | 4 (4\%) |  |  |  |  |
| AASK | Wright Jr. J.T. ${ }^{(45)}$ | 2002 | 217 | 13 (6\%) | 441 | 38 (8.6\%) | 436 | 29 (6.7\%) |  |  |  |  |
| - | Sareli P ${ }^{(97)}$ | 2001 | 233 | 0 (0\%) |  |  | 60 | 0 (0\%) |  |  | 58 | 1 (1.7\%) |

Table 3.15 Relative Treatment Effect of the Pooled Network Comparisons Among Blacks Expressed as RR (95\% Credible Interval) of All-Cause Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_BLACK | BB_BLACK | CCB_BLACK | THZ_BLACK |
| :---: | :---: | :---: | :---: | :---: |
| ACE_BLACK | ACE_BLACK | $1.22(0.824,1.85)$ | $0.918(0.819,1.02)$ | $0.942(0.852,1.04)$ |
| BB_BLACK | $0.82(0.539,1.21)$ | BB_BLACK | $0.754(0.493,1.12)$ | $0.774(0.507,1.15)$ |
| CCB_BLACK | $1.09(0.977,1.22)$ | $1.33(0.891,2.03)$ | CCB_BLACK | $1.03(0.927,1.14)$ |
| THZ_BLACK | $1.06(0.961,1.17)$ | $1.29(0.87,1.97)$ | $0.976(0.881,1.08)$ | THZ_BLACK |

Table 3.16 All-Cause mortality events by study and antihypertensive class among Men

| Study <br> Acronym | Author | Year | N | CCB <br> Outcomes | N | BB <br> Outcomes | N | ACE <br> Outcomes | N | ARB <br> Outcomes | N | THZ <br> Outcomes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALLHAT | Oparil (110) | 2013 | 4768 | 763 (16\%) |  |  | 4867 | 797 (16.4\%) | 2118 | 224 (10.6\%) | 8084 | 1345 (16.6\%) |
| MRC Mild | MRC Working Group ${ }^{(86)}$ | 1985 |  |  | 2285 | 75 (3.3\%) |  |  |  |  | 2238 | 82 (3.7\%) |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  | 2112 | 224 (10.6\%) |  |  |  |  |  |  |
| HAPPHY | Wilhelmsen ${ }^{(78)}$ | 1987 |  |  | 3297 | 285 (8.6\%) |  |  |  |  | 3272 | 299 (9.1\%) |

Table 3.17 Relative Treatment Effect of the Pooled Network Comparisons Among Men Expressed as RR (95\% Credible Interval) of All-Cause Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_MALE | ARB_MALE | BB_MALE | CCB_MALE |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ACE_MALE | ACE_MALE | $0.96(0.7,1.3)$ | $0.95(0.77,1.2)$ | $0.97(0.83,1.1)$ | THZ_MALE |
| ARB_MALE | $1(0.77,1.4)$ | ARB_MALE | $1(0.8,1.2)$ | $1(0.75,1.4)$ | $1.1(0.87,1.2)$ |
| BB_MALE | $1(0.83,1.3)$ | $1(0.81,1.2)$ | BB_MALE | $1.4)$ |  |
| CCB_MALE | $1(0.87,1.2)$ | $0.99(0.72,1.3)$ | $0.98(0.78,1.2)$ | CCB_MALE | $1.3)$ |
| THZ_MALE | $0.99(0.85,1.1)$ | $0.95(0.72,1.2)$ | $0.94(0.79,1.1)$ | $0.96(0.83,1.1)$ | $1(0.89,1.2)$ |

Figure 3.20 Pooled Network Relative risks among Men of All-Cause mortality associated with first line antihypertensive medication classes compared to THZ


Table 3.18 All-Cause mortality events by study and antihypertensive class among Women

| Study | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acronym |  |  | N | Outcomes |
| ALLHAT | Oparil ${ }^{(110)}$ | 2013 | 4280 | 491 (11.5\%) |  |  | 4187 | 499 (11.9\%) |  |  | 7171 | 867 (12.1\%) |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  | 2476 | 207 (8.4\%) |  |  | 2487 | 159 (6.4\%) |  |  |
| MRC Mild | MRC Working Party ${ }^{(86)}$ | 1985 |  |  | 2118 | 45 (2.1\%) |  |  |  |  | 2059 | 46 (2.1\%) |

Table 3.19 Relative Treatment Effect of the Pooled Network Comparisons Among Women Expressed as RR (95\% Credible Interval) of All-Cause Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_FEMALE | ARB_FEMALE | BB_FEMALE | CCB_FEMALE |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ACE_FEMALE | ACE_FEMALE | $0.76(0.37,1.6)$ | $0.98(0.54,1.9)$ | $0.96(0.67,1.4)$ |  |
| ARB_FEMALE | $1.3(0.64,2.7)$ | ARB_FEMALE | $1.3(0.89,1.9)$ | $1.3(0.62,2.5)$ |  |
| BB_FEMALE | $1(0.54,1.9)$ | $0.77(0.53,1.1)$ | BB_FEMALE | $0.97(0.52,1.8)$ |  |
| CCB_FEMALE | $1(0.74,1.5)$ | $0.79(0.39,1.6)$ | $1(0.55,1.9)$ | CCB_FEMALE | $1.3(0.71,2.5)$ |
| THZ_FEMALE | $0.99(0.7,1.4)$ | $0.75(0.4,1.4)$ | $0.98(0.58,1.6)$ | $0.95(0.66,1.3)$ | $1.1(0.74,1.5)$ |

Figure 3.21 Pooled Network Relative risks among Women of All-Cause mortality associated with first line antihypertensive medication classes compared to THZ


Table 3.20 All-Cause mortality events by study and antihypertensive class among Diabetics


Table 3.21 Relative Treatment Effect of the Pooled Network Comparisons Among Diabetics Expressed as RR (95\% Credible Interval) of All-Cause Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_DIABETIC | ARB_DIABETIC | BB_DIABETIC | CCB_DIABETIC | THZ_DIABETIC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ACE_DIABETIC | ACE_DIABETIC | $0.76(0.44,1.4)$ | $1(0.57,1.8)$ | $0.81(0.52,1.2)$ |  |
| ARB_DIABETIC | $1.3(0.73,2.3)$ | ARB_DIABETIC | $1.4(0.75,2.4)$ | $1.1(0.58,1.8)$ |  |
| BB_DIABETIC | $0.98(0.54,1.8)$ | $0.74(0.42,1.3)$ | BB_DIABETIC | $0.79(0.41,1.5)$ |  |
| CCB_DIABETIC | $1.2(0.82,1.9)$ | $0.94(0.55,1.7)$ | $1.3(0.67,2.4)$ | CCB_DIABETIC | $0.911)$ |
| THZ_DIABETIC | $1.1(0.091,14)$ | $0.83(0.067,11)$ | $1.1(0.09,15)$ | $0.088,15)$ |  |

Figure 3.22 Pooled Network Relative risks among Diabetics of All-Cause mortality associated with first line antihypertensive medication classes compared to THZ


## CARDIOVASCULAR MORTALITY OUTCOMES

Table 3.22 Cardiovascular mortality outcomes by antihypertensive class and study

| Study <br> Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcom <br> e N (\%) | N | Outcom <br> e $\mathbf{N}$ (\%) | N | Outcom <br> e N(\%) | N | Outcom <br> e $\mathbf{N ( \% )}$ | N | Outcom <br> e N(\%) |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 12 (2.8) | 217 | 7 (3.2) |  |  |  |  | 441 | 12 (2.7) |
| HYVET- <br> Pilot | Bulpitt CJ ${ }^{(79)}$ | 2003 | 431 | 22 (5.1) |  |  |  |  | 426 | 23 (5.4) |  |  |
| - | Fogari $\mathrm{R}^{(89)}$ | 2002 | 102 | 3 (2.9) | 103 | 4 (3.9) |  |  |  |  |  |  |
| - | Zucchelli P ${ }^{(92)}$ | 1995 | 60 | 1 (1.7) | 61 | 0 (0) |  |  |  |  |  |  |
| $\begin{aligned} & \text { STOP-HTN- } \\ & 2 \end{aligned}$ | Hansson ${ }^{(100)}$ | 1999 | 2205 | 226 (10.3) | 2196 | 212 (9.7) |  |  |  |  |  |  |
| UKPDS 39 | $\underset{(101)}{\text { UKPDS } 39}$ | 1998 | 400 | 47 (11.8) |  |  |  |  |  |  | 358 | 32 (8.9) |
| ANBP2 | Wing LM ${ }^{(69)}$ | 2003 | 3044 | 84 (2.8) |  |  |  |  | 3039 | 82 (2.7) |  |  |
| BENEDICT | $\underset{(71)}{\text { Ruggenenti P }}$ | 2004 | 301 | 1 (0.3) | 303 | 1 (0.3) |  |  |  |  |  |  |
| JMIC-B | Yui Y ${ }^{(81, ~ 82)}$ | 2004 | 822 | 6 (0.7) | 828 | 6 (0.7) |  |  |  |  |  |  |
| ASPIRAL | Marin $\mathrm{R}^{(76)}$ | 2001 | 129 | 3 (2.3) | 112 | 6 (5.4) |  |  |  |  |  |  |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 3 (3.0) |  |  |  |  |  |  | 100 | 2 (2.0) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALLHAT | ALLHAT Res Grp ${ }^{(68)}$ | 2002 | 9054 | 618 (6.8) | 9048 | 603 (6.7) |  |  | 15255 | 996 (6.5) |  |  |
| DETAIL | Barnett AH ${ }^{(73)}$ | 2004 | 130 | 2 (1.5) |  |  | 120 | 3 (2.5) |  |  |  |  |
| $\begin{aligned} & \text { ASCOT- } \\ & \text { BPLA } \end{aligned}$ | Dahlof B ${ }^{(70)}$ | 2005 |  |  | 9639 | 263 (2.7) | 4605 | 204 (4.4) |  |  | 9618 | 342 (3.6) |
| IDNT | Berl T. ${ }^{(115)}$ | 2003 |  |  | 567 | 37 (6.5) | 579 | 52 (8.9) |  |  |  |  |
| ELSA | Zanchetti ${ }^{(74)}$ | 2002 |  |  | 1177 | 4 (0.3) |  |  |  |  | 1157 | 8 (0.7) |
| J-RHYTHM <br> II | Yamashita T (116) | 2001 |  |  | 160 | 0 (0) | 158 | 0 (0.0) |  |  |  |  |
| - | Du Y ${ }^{(117)}$ | 2013 |  |  | 75 | 0 (0) | 74 | 0 (0.0) |  |  |  |  |
| NICS-EH | Kuramoto K (118) | 1999 |  |  | 204 | 2 (1.0) |  |  | 210 | 0 (0.0) |  |  |
| VHAS | Rosei EA ${ }^{(104)}$ | 1997 |  |  | 707 | 5 (0.7) |  |  | 707 | 4 (0.6) |  |  |
| HAPPHY | Wilhelmsen L (78) | 1987 |  |  |  |  |  |  | 3272 | 60 (1.8) | 3297 | 57 (1.7) |
| MRC | MRC Working Party ${ }^{(86)}$ | 1985 |  |  |  |  |  |  | 4297 | 69 (1.6) | 4403 | 65 (1.5) |
| LIFE | Dahlof ${ }^{(83)}$ | 2002 |  |  |  |  | 4605 | 204 (4.4) |  |  | 4588 | 234 (5.1) |
| INSIGHT | Brown ${ }^{(88)}$ | 2000 |  |  | 3157 | 153 (4.8) |  |  | 3164 | 152 (4.8) |  |  |
| MRC-old | MRC Working <br> Party ${ }^{(87)}$ | 1992 |  |  |  |  |  |  | 1081 | 134 (12.4) | 1102 | 167 (15.2) |

Table 3.23 Cardiovascular mortality outcomes among Blacks by antihypertensive class and study

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | Outcome N (\%) | N | Outcome N (\%) | N | Outcome N (\%) | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 12 (2.8) | 217 | 7 (3.2) |  |  |  |  | 441 | 12 (2.7) |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 22 (8.1) |  |  | 263 | 15 (5.7) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 224 (7.0) | 3213 | 215 (6.7) |  |  | 5369 | 362 (6.7) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 3 (3.0) |  |  |  |  |  |  | 100 | 2 (2.0) |

Table 3.24 Relative Treatment Effect of the Pooled Network Comparisons Among Blacks Expressed as RR (95\% Credible Interval) of CV Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_BLACK | ARB_BLACK | BB_BLACK | CCB_BLACK | THZ_BLACK |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_BLACK | ACE_BLACK | $1.17(0.421,3.27)$ | $0.785(0.365,1.58)$ | $0.971(0.658,1.41)$ | $0.968(0.618,1.48)$ |
| ARB_BLACK | $0.855(0.306,2.38)$ | ARB_BLACK | $0.675(0.325,1.44)$ | $0.831(0.292,2.45)$ |  |
| BB_BLACK | $1.27(0.634,2.74)$ | $1.48(0.695,3.07)$ | BB_BLACK | $1.23(0.587,2.78)$ |  |
| CCB_BLACK | $1.03(0.708,1.52)$ | $1.2(0.408,3.42)$ | $0.811(0.359,1.7)$ | CCB_BLACK | $1.23(0.284,2.49)$ |
| THZ_BLACK | $1.03(0.677,1.62)$ | $1.2(0.401,3.53)$ | $0.812(0.353,1.81)$ | $0.999(0.647,1.54)$ | $1(0.651,1.55)$ |

Table 3.25 CV mortality events by study and antihypertensive class among Men

| Study <br> Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N} \text { (\%) } \\ & \hline \end{aligned}$ | N | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N}(\%) \\ & \hline \end{aligned}$ | N | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N}(\%) \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N}(\%) \\ & \hline \end{aligned}$ | N | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N} \text { (\%) } \\ & \hline \end{aligned}$ |
| HAPPY | Wilhelmsen (78) | 1987 |  |  |  |  |  |  | 3272 | 60 (1.8) | 3297 | 57 (1.7) |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  |  |  | 2118 | 116 (5.5) |  |  | 2112 | 130 (6.2) |
| ALLHAT | Oparil ${ }^{(110)}$ | 2013 | 4867 | 362 (7.4) | 4768 | 370 (7.8) |  |  | 8084 | 581 (7.2) |  |  |

Table 3.26 Relative Treatment Effect of the Pooled Network Comparisons Among Men Expressed as RR (95\% Credible Interval) of CV Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_MALE | ARB_MALE | BB_MALE | CCB_MALE |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_MALE | ACE_MALE | $0.82(0.49,1.4)$ | $0.91(0.6,1.4)$ | $1(0.85,1.3)$ | $0.96(0.8,1.2)$ |
| ARB_MALE | $1.2(0.74,2)$ | ARB_MALE | $1.1(0.85,1.5)$ | $1.3(0.76,2.1)$ | $1.2(0.73,1.9)$ |
| BB_MALE | $1.1(0.72,1.7)$ | $0.9(0.68,1.2)$ | BB_MALE | $1.1(0.73,1.5)$ |  |
| CCB_MALE | $0.96(0.79,1.2)$ | $0.79(0.48,1.3)$ | $0.88(0.58,1.4)$ | CCB_MALE 1.7$)$ |  |
| THZ_MALE | $1(0.85,1.2)$ | $0.85(0.53,1.4)$ | $0.95(0.66,1.4)$ | $1.1(0.89,1.3)$ | $0.93(0.77,1.1)$ |

Figure 3.23 Pooled Network Relative risks among Men of CV mortality associated with first line antihypertensive medication classes compared to THZ


Table 3.27 CV mortality events by study and antihypertensive class among Women

| Study <br> Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcome N (\%) |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  |  |  | 2487 | 88 (3.5) |  |  | 2476 | 104 (4.2) |
| ALLHAT | Oparil ${ }^{(110)}$ | 2013 | 4187 | 246 (5.9) | 4280 | 244 (5.7) |  |  | 7171 | 416 (5.8) |  |  |
| MRC Mild | MRC Working Group ${ }^{(86)}$ | 1985 |  |  |  |  |  |  | 2059 | 13 (0.6) | 2118 | 17 (0.8) |

Table 3.28 Relative Treatment Effect of the Pooled Network Comparisons Among Women Expressed as RR (95\% Credible Interval) of CV Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_FEMALE | ARB_FEMALE | BB_FEMALE | CCB_FEMALE | THZ_FEMALE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_FEMALE | ACE_FEMALE | $1.1(0.44,2.9)$ | $1.3(0.58,3.1)$ | $0.97(0.69,1.4)$ | $0.98(0.72,1.3)$ |
| ARB_FEMALE | $0.89(0.35,2.3)$ | ARB_FEMALE | $1.2(0.8,1.8)$ | $0.86(0.33,2.2)$ | $0.88(0.35,2.1)$ |
| BB_FEMALE | $0.76(0.33,1.7)$ | $0.85(0.57,1.3)$ | BB_FEMALE | $0.74(0.31,1.7)$ | $0.75(0.34,1.6)$ |
| CCB_FEMALE | $1(0.74,1.5)$ | $1.2(0.46,3)$ | $1.4(0.6,3.2)$ | CCB_FEMALE | $1(0.74,1.4)$ |
| THZ_FEMALE | $1(0.74,1.4)$ | $1.1(0.48,2.8)$ | $1.3(0.63,3)$ | $0.98(0.72,1.4)$ | THZ_FEMALE |

Figure 3.24 Pooled Network Relative risks among Women of CV mortality associated with first line antihypertensive medication classes compared to THZ


Table 3.29 CV mortality events by study and antihypertensive class among persons with Diabetes

| Study <br> Acronym | Author | Year | N | $\begin{aligned} & \text { ACE } \\ & \text { Outcome N (\%) } \end{aligned}$ | N | $\begin{aligned} & \hline \text { CCB } \\ & \text { Outcome N } \\ & (\%) \\ & \hline \end{aligned}$ | N | ARB <br> Outcome N(\%) | N | $\begin{gathered} \text { THZ } \\ \text { Outcome N (\%) } \end{gathered}$ | N | $\begin{gathered} \text { BB } \\ \text { Outcome N(\%) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DETAIL | Barnett ${ }^{(73)}$ | 2004 | 130 | 2 (1.5) |  |  | 120 | 3 (2.5) |  |  |  |  |
| -- | Fogari ${ }^{89}{ }^{\text {( }}$ | 2002 | 102 | 3 (2.9) | 103 | 4 (3.9) |  |  |  |  |  |  |
| STOP-HTN-2 | Lindholm ${ }^{(112)}$ | 2000 | 235 | 39 (16.6) | 231 | 33 (14.3) |  |  |  |  |  |  |
| LIFE | Lindholm ${ }^{(113,114)}$ | 2002 |  |  |  |  | 586 | 38 (6.5) |  |  | 609 | 61 (10.0) |
| UKPDS | UKPDS $39{ }^{(101)}$ | 1998 | 400 | 47 (11.8) |  |  |  |  |  |  | 358 | 32 (8.9) |
| IDNT | Berl ${ }^{(115)}$ | 2003 |  |  | 567 | 37 (6.5) | 579 | 52 (9.0) |  |  |  |  |
| JMIC-B | Yui ${ }^{(81, ~ 82)}$ | 2004 | 173 | 3 (1.7) | 199 | 1 (0.5) |  |  |  |  |  |  |
| BENEDICT | Ruggenenti ${ }^{(71)}$ | 2004 | 301 | 1 (0.3) | 303 | 1 (0.3) |  |  |  |  |  |  |
| ABCD | Estacio (66, 67) | 1998 |  |  |  |  |  |  |  |  |  |  |

Table 3.30 Relative Treatment Effect of the Pooled Network Comparisons Among Persons with Diabetes Expressed as RR (95\% Credible Interval) of CV Mortality Associated with Antihypertensive Drug Class Comparisons

|  | ACE_DIABETIC | ARB_DIABETIC | BB_DIABETIC | CCB_DIABETIC |
| :---: | :---: | :---: | :---: | :---: |
| ACE_DIABETIC | ACE_DIABETIC | $0.86(0.36,2.2)$ | $1(0.41,2.5)$ | $0.78(0.41,1.5)$ |
| ARB_DIABETIC | $1.2(0.46,2.8)$ | ARB_DIABETIC | $1.2(0.47,2.9)$ | $0.9(0.36,2.2)$ |
| BB_DIABETIC | $1(0.39,2.4)$ | $0.87(0.35,2.1)$ | BB_DIABETIC | $0.78(0.28,2.1)$ |
| CCB_DIABETIC | $1.3(0.67,2.4)$ | $1.1(0.46,2.7)$ | $1.3(0.47,3.6)$ | CCB_DIABETIC |

Figure 3.25 Pooled Network Relative risks among Persons with Diabetes of CV mortality associated with first line antihypertensive medication classes compared to THZ


## MYOCARDIAL INFARCTION OUTCOMES

Table 3.31 Myocardial Infarction events by study and antihypertensive class

| Study Acronym | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| DETAIL | Barnett ${ }^{(73)}$ | 2004 | 130 | 2 (1.5\%) |  |  |  |  | 120 | 1 (0.8\%) |  |  |
|  | Fogari ${ }^{(89)}$ | 2002 | 103 | 1 (1.9\%) |  |  | 102 | 1 (1.0\%) |  |  |  |  |
| STOP-HTN-2 | Hansson ${ }^{(100)}$ | 1999 | 2,196 | 59 (2.7\%) |  |  | 2,205 | 48 (2.2\%) |  |  |  |  |
| ALPINE | Lindholm ${ }^{(119)}$ | 2003 |  |  |  |  |  |  | 196 | 1 (0.5\%) | 196 | 1 (0.5\%) |
| VALUE | Julius ${ }^{(102)}$ | 2004 | 7,596 | 313 (4.1\%) |  |  |  |  | 7,649 | 369 (4.8\%) |  |  |
| UKPDS | UKPDS ${ }^{(101)}$ | 1998 |  |  | 358 | 46 (12.9\%) | 400 | 61 (15.3\%) |  |  |  |  |
| ANBP2 | Wing ${ }^{(69)}$ | 2003 |  |  |  |  | 3,044 | 58 (1.9\%) |  |  | 3,039 | 82 (2.7\%) |
| LIFE | Dahlof ${ }^{(83)}$ | 2002 |  |  | 4,588 | 188 (4.1\%) |  |  | 4,605 | 198 (4.3\%) |  |  |
| FACET | Tatti ${ }^{(77)}$ | 1998 | 191 | 13 (6.8\%) |  |  | 189 | 10 (5.4\%) |  |  |  |  |
| IDNT | Berl ${ }^{(115)}$ | 2003 | 567 | 27 (4.8\%) |  |  |  |  | 579 | 44 (7.6\%) |  |  |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

|  | Estacio ${ }^{(66)}$ | 1998 | 235 | 25 (10.6\%) |  |  | 235 | 5 (2.1\%) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHYLISS | Zanchetti ${ }^{(120)}$ | 2004 |  |  |  |  | 127 | 0 (0\%) |  |  | 127 | 3 (2.4\%) |
| HAPPHY | Wilhelmsen ${ }^{(78)}$ | 1987 |  |  | 3,297 | 84 (2.5\%) |  |  |  |  | 3,272 | 75 (2.3\%) |
| JMIC-B | Yui ${ }^{(82)}$ | 2004 | 828 | 16 (1.9\%) |  |  | 822 | 13 (1.6\%) |  |  |  |  |
| J-MIND | Baba ${ }^{(121)}$ | 2001 | 228 | 1 (0.4\%) |  |  | 208 | 1 (0.5\%) |  |  |  |  |
| CORD IB | Spinar ${ }^{(72)}$ | 2009 |  |  |  |  | 1,926 | 4 (0.2\%) | 1,887 | 3 (0.2\%) |  |  |
| ESPIRAL <br> ASCOT- | Marin ${ }^{(76)}$ | 2001 | 112 | 1 (0.9\%) |  |  | 129 | 2 (1.6\%) |  |  |  |  |
| BPLA | Collier ${ }^{(122)}$ | 2011 | 9,639 | 390 (4.0\%) | 9,618 | 444 (4.6\%) |  |  |  |  |  |  |
| J-RHYTHM II | Yamashita ${ }^{(116)}$ | 2011 | 160 | 0 (0\%) |  |  |  |  | 158 | 0 (0\%) |  |  |
| VART | Narumi ${ }^{(103)}$ | 2011 | 511 | 1 (0.2\%) |  |  |  |  | 510 | 2 (0.4\%) |  |  |
|  | Agarwal ${ }^{(94)}$ | 2014 |  |  | 100 | 2 (2\%) | 100 | 3 (3\%) |  |  |  |  |
| SHELL | Malacco ${ }^{(99)}$ | 2003 | 942 | 12 (1.3\%) |  |  |  |  |  |  | 940 | 14 (1.5\%) |
|  | $\mathrm{Du}^{(117)}$ <br> ALLHAT Res | 2013 | 75 | 0 (0\%) |  |  |  |  | 74 | 0 (0\%) |  |  |
| ALLHAT | Grp ${ }^{(68)}$ | 2002 | 9,048 | 798 (8.8\%) |  |  | 9,054 | 796 (8.8\%) |  |  | 15,255 | 1,362 (8.9\%) |
| MIDAS | Borhani ${ }^{(105)}$ | 1996 | 442 | 6 (1.4\%) |  |  |  |  |  |  | 441 | 5 (1.1\%) |
| NICS-EH | Kuramoto ${ }^{(118)}$ | 1999 | 204 | 2 (1.0\%) |  |  |  |  |  |  | 210 | 2 (1.0\%) |
| INSIGHT | Brown ${ }^{(88)}$ MRC Working | 2000 | 3157 | 16 (0.51\%) |  |  |  |  |  |  | 3164 | 5 (0.16\%) |
| MRC old* | Party ${ }^{(87)}$ | 1992 |  |  | 1102 | 80 (7.3\%) |  |  |  |  | 1081 | 48 (4.4\%) |
| ELSA | Zanchetti ${ }^{(74)}$ | 2002 | 1,177 | 18 (1.5\%) | 1,157 | 17 (1.5\%) |  |  |  |  |  |  |

*included all CHD event

Figure 3.26 Relative risks of myocardial infarction associated with first line antihypertensive medication classes compared to Thiazides


## Compared with THZ

Table 3.32 Relative Treatment Effect of Pairwise Comparisons Expressed as RR (95\% Credible Interval) of Myocardial Infarction Associated with Antihypertensive Drug Class Comparisons (read top to left)

|  | ACE | ARB | BB | CCB | THZ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | ACE | $1.39(0.941,2.12)$ | $1.22(0.864,1.63)$ | $1.15(0.902,1.5)$ | $1.02(0.727,1.32)$ |
| ARB | $0.717(0.472,1.06)$ | ARB | $0.875(0.581,1.22)$ | $0.829(0.596,1.16)$ | $0.728(0.466,1.05)$ |
| BB | $0.823(0.612,1.16)$ | $1.14(0.82,1.72)$ | BB | $0.947(0.727,1.31)$ | $0.836(0.608,1.13)$ |
| CCB | $0.867(0.666,1.11)$ | $1.21(0.865,1.68)$ | $1.06(0.763,1.38)$ | CCB | $0.877(0.636,1.12)$ |
| THZ | $0.982(0.755,1.37)$ | $1.37(0.953,2.14)$ | $1.2(0.887,1.64)$ | $1.14(0.891,1.57)$ | THZ |

Table 3.33 MI outcomes among Blacks by antihypertensive class and study

| Study <br> Acronym | Author | Year | $\begin{aligned} & \text { ACE } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \text { ССВ } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \text { ARB } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \mathrm{THZ} \\ & \mathrm{~N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \text { BB } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 13 (4.8) |  |  | 263 | 6 (2.3) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 260 (8.1) | 3213 | 243 (7.6) |  |  | 5369 | 400 (7.5) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 3 (3.0) |  |  |  |  |  |  | 100 | 2 (2.0) |

Table 3.34 Relative Treatment Effect of the Pooled Network Comparisons Among Blacks Expressed as RR (95\% Credible Interval) of MI Associated with Antihypertensive Drug Class Comparisons

|  | ACE_BLACK | ARB_BLACK | BB_BLACK | CCB_BLACK |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_BLACK | ACE_BLACK | $1.26(0.107,15.6)$ | $0.577(0.0645,4.66)$ | $0.929(0.361,2.39)$ | $0.911(0.368,2.4)$ |
| ARB_BLACK | $0.792(0.0642,9.31)$ | ARB_BLACK | $0.455(0.118,1.66)$ | $0.721(0.0507,10.5)$ | $0.707(0.051,9.91)$ |
| BB_BLACK | $1.73(0.215,15.5)$ | $2.2(0.604,8.46)$ | BB_BLACK | $1.61(0.171,16.9)$ |  |
| CCB_BLACK | $1.08(0.419,2.77)$ | $1.39(0.0953,19.7)$ | $0.622(0.059,5.86)$ | CCB_BLACK | $1.6(0.17,17.1)$ |
| THZ_BLACK | $1.1(0.417,2.71)$ | $1.41(0.101,19.6)$ | $0.625(0.0585,5.88)$ | $1.02(0.392,2.61)$ | $0.985(0.384,2.55)$ |

## HEART FAILURE OUTCOMES

Table 3.35 Heart Failure events by study and antihypertensive class

| Study Acronym | Author | Year |  |  |  |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| DETAIL | Barnett ${ }^{(73)}$ | 2004 | 130 | 7 (5.4\%) |  |  |  |  | 120 | 9 (7.5\%) |  |  |
| AASK | Norris ${ }^{(46)}$ | 2006 | 217 | 8 (3.7\%) | 441 | 22 (5.0\%) | 436 | 20 (4.6\%) |  |  |  |  |
| VALUE | Julius ${ }^{(102)}$ | 2004 | 7,596 | 400 (5.3\%) |  |  |  |  | 7,649 | 354 (4.6\%) |  |  |
|  | UKPDS ${ }^{(101)}$ | 1998 |  |  | 358 | 9 (2.5\%) | 400 | 12 (3\%) |  |  |  |  |
| ABCD | Estacio (66, 67) | 1998 | 235 | 6 (2.6\%) |  |  | 235 | 5 (2.1\%) |  |  |  |  |
| ASCOT-BPLA | Dahlof ${ }^{(70)}$ | 2005 | 9,639 | 134 (1.4\%) | 9,618 | 159 (1.7\%) |  |  |  |  |  |  |
| ANBP2 | Wing ${ }^{(69)}$ | 2003 |  |  |  |  | 3,044 | 69 (2.3\%) |  |  | 3,039 | 78 (2.6\%) |
| LIFE | Dahlof ${ }^{(83)}$ | 2002 |  |  | 4,588 | 161 (3.5\%) |  |  | 4,605 | 153 (3.3\%) |  |  |
| IDNT | Berl ${ }^{(115)}$ | 2003 | 567 | 93 (16.4\%) |  |  |  |  | 579 | $60 \text { (10.4\%) }$ |  |  |
| HAPPHY | Wilhelmsen ${ }^{(78)}$ | 1987 |  |  | 3,297 | 32 (1.0\%) |  |  |  |  | 3,272 | 22 (0.7\%) |
| JMIC-B | Yui ${ }^{(81, ~ 82)}$ | 2004 | 828 | 12 (1.4\%) |  |  | 822 | 9 (1.1\%) |  |  |  |  |
| J-MIND | Baba ${ }^{(121)}$ | 2001 | 228 | 1 (0.4\%) |  |  | 208 | 0 (0\%) |  |  |  |  |
| J-RHTHYM II | Yamashita ${ }^{(116)}$ | 2011 | 160 | 0 (0\%) |  |  |  |  | 158 | 0 (0\%) |  |  |
| VART | Narumi ${ }^{(103)}$ | 2011 | 511 | 1 (0.2\%) |  |  |  |  | 510 | 3 (0.6\%) |  |  |
|  | Agarwal ${ }^{(94)}$ | 2014 |  |  | 100 | 5 (5\%) | 100 | 10 (10\%) |  |  |  |  |
| SHELL | Malacco ${ }^{(99)}$ | 2003 | 942 | 23 (2.4\%) |  |  |  |  |  |  | 940 | 19 (2.0\%) |
| INSIGHT | Brown ${ }^{(88)}$ | 2000 | 3157 | 2 (0.06\%) |  |  |  |  |  |  | 3164 | 1 (0.03\%) |
|  | Du ${ }^{(117)}$ <br> ALLHAT Res | 2013 | 75 | 0 (0\%) |  |  |  |  | 74 | 0 (0\%) |  |  |
| ALLHAT | $\operatorname{Grp}^{(68)}$ | 2002 | 9,048 | 578 (6.4\%) |  |  | 9,054 | 471 (5.2\%) |  |  | 15,255 | 724 (4.7\%) |
| MIDAS | Borhani ${ }^{(105)}$ | 1996 | 442 | 2 (0.5\%) |  |  |  |  |  |  | 441 | 0 (0\%) |
| NICS-EH | Kuramoto ${ }^{(118)}$ | 1999 | 204 | 0 (0\%) |  |  |  |  |  |  | 210 | 3 (1.4\%) |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

Table 3.36 Relative Treatment Effect of Pairwise Comparisons Expressed as RR (95\% Credible Interval) of Heart Failure Associated with Antihypertensive Drug Class Comparisons (read top to left)

|  | ACE | ARB | BB | CCB | THZ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | ACE | $0.972(0.706,1.36)$ | $1.12(0.836,1.44)$ | $1.13(0.903,1.33)$ | $0.865(0.676,1.09)$ |
| ARB | $1.03(0.736,1.42)$ | ARB | $1.15(0.805,1.52)$ | $1.17(0.819,1.54)$ | $0.889(0.613,1.27)$ |
| BB | $0.897(0.694,1.2)$ | $0.869(0.659,1.24)$ | BB | $1.01(0.786,1.31)$ | $0.775(0.578,1.07)$ |
| CCB | $0.881(0.75,1.11)$ | $0.858(0.651,1.22)$ | $0.987(0.766,1.27)$ | CCB | $\mathbf{0 . 7 6 2}(\mathbf{0 . 6 1 3 , 0 . 9 9 2 )}$ |
| THZ | $1.16(0.915,1.48)$ | $1.12(0.789,1.63)$ | $1.29(0.936,1.73)$ | $\mathbf{1 . 3 1}(\mathbf{1 . 0 1 , \mathbf { 1 . 6 3 } )}$ | THZ |

Table 3.37 HF outcomes among Blacks by antihypertensive class and study

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcome N (\%) | N | $\begin{aligned} & \text { Outcome } \\ & \text { N(\%) } \end{aligned}$ | N | Outcome N (\%) | N | Outcome N (\%) | N | Outcome N (\%) |
| AASK | Norris ${ }^{(46)}$ | 2006 | 436 | 20 (4.5) |  |  |  |  |  |  | 441 | 22 (5.0) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 220 (6.8) | 3213 | 248 (7.7) |  |  | 5369 | 283 (5.3) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 10(10) |  |  |  |  |  |  | 100 | 5 (5) |

*note for Wright the direct comparison for CCB vs ACE was not included due to a difference in time periods for comparison

Table 3.38 Relative Treatment Effect of the Pooled Network Comparisons Among Blacks Expressed as RR (95\% Credible Interval) of HF Associated with Antihypertensive Drug Class Comparisons

|  | ACE_BLACK | BB_BLACK | CCB_BLACK | THZ_BLACK |
| :--- | :--- | :--- | :--- | :--- |
| ACE_BLACK | ACE_BLACK | $0.87(0.4,1.7)$ | $1(0.47,1.7)$ | $0.72(0.31,1.5)$ |
| BB_BLACK | $1.1(0.59,2.5)$ | BB_BLACK | $1.1(0.48,2.5)$ | $0.82(0.31,2.3)$ |
| CCB_BLACK | $1(0.6,2.1)$ | $0.89(0.4,2.1)$ | CCB_BLACK | $0.72(0.36,1.7)$ |
| THZ_BLACK | $1.4(0.68,3.2)$ | $1.2(0.44,3.2)$ | $1.4(0.6,2.8)$ | THZ_BLACK |

Table 3.39 HF events by study and antihypertensive class among Men

| Study Acronym | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| ALLHAT | Oparil ${ }^{(110)}$ | 2013 | 4768 | 38 (0.8\%) |  |  | 4867 | 33 (0.7\%) |  |  | 8084 | 51 (0.6\%) |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  | 2112 | 81 (3.8\%) |  |  | 2118 | 78 (3.7\%) |  |  |
| HAPPHY | Wilhelmsen ${ }^{(78)}$ | 1987 |  |  | 3297 | 32 (1\%) |  |  |  |  | 3272 | 22 (0.7\%) |

Table 3.40 Relative Treatment Effect of the Pooled Network Comparisons Among Men Expressed as RR (95\% Credible Interval) of HF Associated with Antihypertensive Drug Class Comparisons

|  | ACE_MALE | ARB_MALE | BB_MALE | CCB_MALE | THZ_MALE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_MALE | ACE_MALE | $1.3(0.47,3.8)$ | $1.4(0.55,3.4)$ | $1.1(0.61,2.1)$ | $0.91(0.49,1.6)$ |
| ARB_MALE | $0.75(0.26,2.1)$ | ARB_MALE | $1(0.6,1.7)$ | $0.86(0.3,2.4)$ |  |
| BB_MALE | $0.74(0.3,1.8)$ | $0.98(0.58,1.7)$ | BB_MALE | $0.84(0.34,2)$ |  |
| CCB_MALE | $0.88(0.47,1.6)$ | $1.2(0.41,3.3)$ | $1.2(0.49,3)$ | CCB_MALE |  |
| THZ_MALE | $1.1(0.61,2)$ | $1.5(0.62,3.5)$ | $1.5(0.76,3)$ | $1.3(0.7,2.3)$ | $0.79(0.34,1.6)$ |

Figure 3.27 Pooled Network Relative risks among Men of HF associated with first line antihypertensive medication classes compared to THZ


Table 3.41 HF events by study and antihypertensive class among Women

| Study | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acronym |  |  | N | Outcomes |
| ALLHAT | Oparil ${ }^{(110)}$ | 2013 | 4280 | 45 (1\%) |  |  | 4187 | 37 (0.9\%) |  |  | 7171 | 63 (0.9\%) |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  | 2476 | 80 (3.2\%) |  |  | 2487 | 74 (3\%) |  |  |

Table 3.42 HF events by study and antihypertensive class among Diabetics

| Study Acronym | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| DETAIL | Barnett ${ }^{(73)}$ | 2004 |  |  |  |  | 130 | 7 (5.4\%) | 120 | 9 (7.5\%) |  |  |
|  | Lindholm ${ }^{(113,114)}$ | 2002 |  |  | 609 | 55 (9\%) |  |  | 586 | 32 (5.5\%) |  |  |
| STOP-HTN-2 | Lindholm ${ }^{(112)}$ | 2000 | 231 | 24 (10.4\%) |  |  | 235 | 22 (9.4\%) |  |  |  |  |
| UKPDS 39 | UKPDS $39{ }^{(101)}$ | 1998 |  |  | 358 | 9 (2.5\%) | 400 | 12 (3\%) |  |  |  |  |
| ABCD | Estacio (66, 67) | 1998 | 235 | 6 (2.6\%) |  |  | 235 | 5 (2.1\%) |  |  |  |  |
| IDNT | Berl ${ }^{(115)}$ | 2003 | 567 | 93 (16.4\%) |  |  |  |  | 579 | 60 (10.4\%) |  |  |
| JMIC-B | Yui ${ }^{(81, ~ 82)}$ | 2004 | 199 | 8 (4\%) |  |  | 173 | 5 (2.9\%) |  |  |  |  |
| J-MIND | Baba ${ }^{(121)}$ | 2001 | 228 | 1 (0.4\%) |  |  | 208 | 0 (0\%) |  |  |  |  |

Table 3.43 Relative Treatment Effect of the Pooled Network Comparisons Among Diabetics Expressed as RR (95\% Credible Interval) of HF Associated with Antihypertensive Drug Class Comparisons

|  | ACE_DIABETIC | ARB_DIABETIC | BB_DIABETIC | CCB_DIABETIC |
| :--- | :--- | :--- | :--- | :--- |
| ACE_DIABETIC | ACE_DIABETIC | $0.73(0.4,1.5)$ | $1(0.48,2.2)$ | $1.1(0.67,1.9)$ |
| ARB_DIABETIC | $1.4(0.68,2.5)$ | ARB_DIABETIC | $1.4(0.66,2.7)$ | $1.5(0.79,2.7)$ |
| BB_DIABETIC | $0.97(0.46,2.1)$ | $0.71(0.38,1.5)$ | BB_DIABETIC | $1.1(0.49,2.4)$ |
| CCB_DIABETIC | $0.9(0.52,1.5)$ | $0.66(0.37,1.3)$ | $0.94(0.41,2)$ | CCB_DIABETIC |

Figure 3.28 Pooled Network Relative risks among Diabetics of HF associated with first line antihypertensive medication classes compared to ARB (No Studies had a THZ Arm)


## STROKE OUTCOMES

Table 3.44 Fatal and non-fatal stroke outcomes by antihypertensive class and study

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{aligned} & \text { Stroke } \\ & \text { N (\%) } \\ & \hline \end{aligned}$ | N | Stroke $\mathrm{N} \text { (\%) }$ | N | Stroke N (\%) | N | Stroke N (\%) | N | $\begin{aligned} & \text { Stroke } \\ & \mathrm{N} \text { (\%) } \\ & \hline \end{aligned}$ |
| DETAIL | Barnett AH ${ }^{(73)}$ | 2004 | 130 | 6 (4.6) |  |  | 120 | 6 (5.0) |  |  |  |  |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 23 (5.3) | 217 | 9 (4.1) |  |  |  |  | 441 | 23 (5.2) |
| HYVET-Pilot | Bulpitt CJ ${ }^{(79)}$ | 2003 | 431 | 7 (1.6) |  |  |  |  | 426 | 6 (1.4) |  |  |
| -- | Fogari ${ }^{(89)}$ | 2002 | 102 | 1 (0.98) | 103 | 0 (0.0) |  |  |  |  |  |  |
| STOP-HTN-2 | Hansson L ${ }^{(100)}$ | 1999 | 2205 | 50 (2.3) | 2196 | 46 (2.1) |  |  |  |  |  |  |
| UKPDS | UKPDS $39{ }^{(101)}$ | 1998 | 400 | 21 (5.3) |  |  |  |  |  |  | 358 | 17 (4.7) |
| ABCD | Estacio RO ${ }^{(66,67)}$ | 1998 | 235 | 7 (3.0) | 235 | 11 (4.7) |  |  |  |  |  |  |
| ANBP2 | Wing LM ${ }^{(69)}$ | 2003 | 3044 | 112 (3.7) |  |  |  |  | 3039 | 107 (3.5) |  |  |
| PHYLLIS | Zanchetti A ${ }^{(102)}$ | 2004 | 127 | 0 (0.0) |  |  |  |  | 127 | 0 (0.0) |  |  |
| JMIC-B | Yui Y ${ }^{(81, ~ 82)}$ | 2004 | 822 | 16 (1.9) | 828 | 16 (1.9) |  |  |  |  |  |  |
| J-MIND | Baba S ${ }^{(121)}$ | 2001 | 208 | 5 (2.4) | 228 | 2 (0.88) |  |  |  |  |  |  |
| CORD IB | Spinar $\mathbf{J}^{(72)}$ | 2009 | 1926 | 8 (0.42) |  |  | 1887 | 9 (0.48) |  |  |  |  |
| ESPIRAL | Marin $\mathrm{R}^{(76)}$ | 2001 | 129 | 0 (0.0) | 112 | 2 (1.8) |  |  |  |  |  |  |
| -- | Agarwal R ${ }^{(94)}$ | 2014 | 100 | 2 (2.0) |  |  |  |  |  |  | 100 | 2 (2.0) |
| ALLHAT | Yamal JM ${ }^{(109)}$ | 2014 | 9054 | 460 (5.1) | 9048 | 382 (4.2) |  |  | 15255 | 683 (4.5) |  |  |
| ALPINE | Lindholm LH ${ }^{(119)}$ | 2003 |  |  |  |  | 196 | 0 (0.0) | 196 | 0 (0.0) |  |  |
| VALUE | Julius S ${ }^{(28,102)}$ | 2004 |  |  | 7596 | 281 (3.7) | 7649 | 322 (4.2) |  |  |  |  |
| LIFE | Dahlof B ${ }^{(83)}$ | 2002 |  |  |  |  | 4605 | 232 (5.0) |  |  | 4588 | 309 (6.7) |
| IDNT | Berl ${ }^{(115)}$ | 2003 |  |  | 567 | 15 (2.6) | 579 | 28 (4.8) |  |  |  |  |
| J-RHYTHM II | Yamashita T ${ }^{(116)}$ | 2011 |  |  | 160 | 3 (1.9) | 158 | 0 (0.0) |  |  |  |  |
| VART | Narumi H ${ }^{(103)}$ | 2011 |  |  | 511 | 10 (2.0) | 510 | 10 (2.0) |  |  |  |  |
| -- | Du H ${ }^{(117)}$ | 2013 |  |  | 75 | 0 (0.0) | 74 | 1 (1.4) |  |  |  |  |
| ELSA | Zanchetti A ${ }^{(74)}$ | 2002 |  |  | 1177 | 9 (0.76) |  |  |  |  | 1157 | 14 (1.2) |
| HAPPHY | Wilhelmsen L ${ }^{(78)}$ | 1987 |  |  |  |  |  |  | 3272 | 41 (1.3) | 3297 | 32 (0.97) |
| SHELL | Malacco E ${ }^{(99)}$ | 2003 |  |  | 942 | 37 (3.9) |  |  | 940 | 38 (4.0) |  |  |
| MIDAS | Borhani N.O ${ }^{(105)}$ | 1996 |  |  | 442 | 6 (1.4) |  |  | 441 | 3 (0.68) |  |  |
| NICS-EH | Kuramoto K ${ }^{(118)}$ | 1999 |  |  | 204 | 12 (5.9) |  |  | 210 | 8 (3.8) |  |  |
| INSIGHT | Brown ${ }^{(88)}$ | 2000 |  |  | 3157 | 55 (1.7) |  |  | 3164 | 63 (2.0) |  |  |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

| MRC-old | MRC Working Party ${ }^{(87)}$ | 1992 | 1081 | 44 (4.1) | 1102 | 51 (4.6) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MRC-mild | MRC Working Party ${ }^{(86)}$ | 1985 | 4297 | 18 (0.42) | 4403 | 42 (0.95) |

Table 3.45 Relative Treatment Effect of Pooled Network Comparisons Expressed as RR (95\% Credible Interval) of Stroke Associated with Antihypertensive Drug Class Comparisons

|  | ACE | ARB | BB | CCB | THZ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | ACE | $0.97(0.76,1.2)$ | $1.2(0.88,1.4)$ | $0.85(0.71,0.98)$ | $0.89(0.7,1)$ |
| ARB | $1(0.83,1.3)$ | ARB | $1.2(0.91,1.5)$ | $0.88(0.71,1.1)$ | $0.92(0.69,1.1)$ |
| BB | $0.86(0.71,1.1)$ | $0.84(0.68,1.1)$ | BB | $0.73(0.6,0.93)$ |  |
| CCB | $1.2(1,1.4)$ | $1.1(0.93,1.4)$ | $1.4(1.1,1.7)$ | CCB |  |
| THZ | $1.1(0.98,1.4)$ | $1.1(0.88,1.4)$ | $1.3(1.1,1.6)$ | $0.9(0.62,0.95)$ |  |

Table 3.46 Stroke outcomes among Blacks by antihypertensive class and study

| Study <br> Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { Outcome } \\ \text { N(\%) } \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \text { N(\%) } \\ \hline \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \end{gathered}$ | N | $\begin{gathered} \text { Outcome } \\ \mathrm{N}(\%) \\ \hline \end{gathered}$ |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 23 (5.3) | 217 | 9 (4.1) |  |  |  |  | 441 | 23 (5.2) |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 24 (8.9) |  |  | 263 | 12 (4.6) |
| ALLHAT | Yamal ${ }^{(109)}$ | 2017 | 3210 | 214 (6.7) | 3213 | 146 (4.5) |  |  | 5369 | 260 (4.8) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 2 (2.0) |  |  |  |  |  |  | 100 | 2 (2.0) |

Table 3.47 Relative Treatment Effect of the Pooled Network Comparisons Among Blacks Expressed as RR (95\% Credible Interval) of Fatal or Non-Fatal Stroke Associated with Antihypertensive Drug Class Comparisons

|  | ACE_BLACK | ARB_BLACK | BB_BLACK | CCB_BLACK |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_BLACK | ACE_BLACK | $1.83(0.574,5.84)$ | $0.886(0.433,1.78)$ | $0.691(0.383,1.2)$ | $0.727(0.362,1.43)$ |
| ARB_BLACK | $0.548(0.171,1.74)$ | ARB_BLACK | $0.486(0.187,1.26)$ | $0.374(0.114,1.23)$ | $0.395(0.108,1.39)$ |
| BB_BLACK | $1.13(0.561,2.31)$ | $2.06(0.792,5.34)$ | BB_BLACK | $0.778(0.353,1.77)$ | $0.823(0.33,2.1)$ |
| CCB_BLACK | $1.45(0.836,2.61)$ | $2.68(0.814,8.79)$ | $1.29(0.565,2.83)$ | CCB_BLACK | $1.06(0.529,2.1)$ |
| THZ_BLACK | $1.37(0.698,2.76)$ | $2.53(0.719,9.24)$ | $1.22(0.475,3.03)$ | $0.944(0.477,1.89)$ | THZ_BLACK |

Table 3.48 Stroke events by study and antihypertensive class among Men

| Study <br> Acronym | Author | Year | ACE |  | ССВ |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Outcome } \\ & \text { N (\%) } \end{aligned}$ |  | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N}(\%) \end{aligned}$ |  | $\begin{aligned} & \text { Outcome } \\ & \text { N (\%) } \end{aligned}$ |  | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N}(\%) \\ & \hline \end{aligned}$ | N | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N}(\%) \\ & \hline \end{aligned}$ |
| HAPPY | Wilhelmsen (78) | 1987 |  |  |  |  |  |  | 3272 | 41 (1.3) | 3297 | 32 (1.0) |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  |  |  | 2118 | 123 (5.8) |  |  | 2112 | 155 (7.3) |
| ALLHAT | Yamal ${ }^{(109)}$ | 2014 | 4867 | 259 (5.3) | 4768 | 237 (5.0) |  |  | 8084 | 395 (4.9) |  |  |
| MRC Mild | MRC Working Group ${ }^{(123)}$ | 1987 |  |  |  |  |  |  | 2238 | 11 (0.5) | 2285 | 26 (1.1) |

Table 3.49 Relative Treatment Effect of the Pooled Network Comparisons Among Men Expressed as RR (95\% Credible Interval) of Stroke Associated with Antihypertensive Drug Class Comparisons

|  | ACE_MALE | ARB_MALE | BB_MALE | CCB_MALE | THZ_MALE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_MALE | ACE_MALE | $0.93(0.15,6.3)$ | $1.2(0.27,5.4)$ | $0.93(0.28,3)$ | $0.9(0.27,2.9)$ |
| ARB_MALE | $1.1(0.16,6.6)$ | ARB_MALE | $1.2(0.39,3.9)$ | $0.99(0.15,5.8)$ | $0.98(0.21,4)$ |
| BB_MALE | $0.86(0.19,3.7)$ | $0.8(0.26,2.6)$ | BB_MALE | $0.81(0.18,3.3)$ | $0.79(0.3,1.8)$ |
| CCB_MALE | $1.1(0.34,3.5)$ | $1(0.17,6.5)$ | $1.2(0.3,5.6)$ | CCB_MALE | $0.99(0.31,3)$ |
| THZ_MALE | $1.1(0.35,3.7)$ | $1(0.25,4.7)$ | $1.3(0.56,3.3)$ | $1(0.33,3.2)$ | THZ_MALE |

Figure 3.29 Pooled Network Relative risks among Men of Stroke associated with first line antihypertensive medication classes compared to THZ


Table 3.50 Stroke events by study and antihypertensive class among Women

| Study <br> Acronym | Author | Year | $\begin{aligned} & \text { ACE } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \text { CCB } \\ & \mathrm{N} \end{aligned}$ | Outcome N (\%) | ARB <br> N | Outcome N (\%) | $\begin{aligned} & \mathrm{THZ} \\ & \mathrm{~N} \end{aligned}$ | Outcome N (\%) | $\begin{aligned} & \mathrm{BB} \\ & \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \text { Outcome } \\ & \mathrm{N} \text { (\%) } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LIFE | Os ${ }^{(111)}$ | 2008 |  |  |  |  | 2487 | 109 (4.4) |  |  | 2476 | 154 (6.2) |
| ALLHAT | Yamal ${ }^{(109)}$ | 2014 | 4187 | 201 (4.8) | 4280 | 145 (3.4) |  |  | 7171 | 288 (4.0) |  |  |
| MRC Mild | MRC Working Group ${ }^{(86)}$ | 1985 |  |  |  |  |  |  | 2059 | 14 (0.7) | 2118 | 25 (1.1) |

Table 3.51 Relative Treatment Effect of the Pooled Network Comparisons Among Women Expressed as RR ( $95 \%$ Credible Interval) of Stroke Associated with Antihypertensive Drug Class Comparisons

|  | ACE_FEMALE | ARB_FEMALE | BB_FEMALE | CCB_FEMALE | THZ_FEMALE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_FEMALE | ACE_FEMALE | $1.1(0.28,3.9)$ | $1.5(0.49,4.7)$ | $0.7(0.33,1.4)$ | $0.83(0.41,1.7)$ |
| ARB_FEMALE | $0.93(0.26,3.6)$ | ARB_FEMALE | $1.4(0.7,2.9)$ | $0.65(0.18,2.5)$ | $0.77(0.26,2.5)$ |
| BB_FEMALE | $0.65(0.21,2)$ | $0.71(0.35,1.4)$ | BB_FEMALE | $0.46(0.15,1.5)$ | $0.55(0.21,1.4)$ |
| CCB_FEMALE | $1.4(0.71,3)$ | $1.5(0.4,5.6)$ | $2.2(0.68,6.9)$ | CCB_FEMALE | $1.2(0.59,2.4)$ |
| THZ_FEMALE | $1.2(0.59,2.4)$ | $1.3(0.4,3.9)$ | $1.8(0.73,4.7)$ | $0.85(0.42,1.7)$ | THZ_FEMALE |

Figure 3.30 Pooled Network Relative risks among Women of Stroke associated with first line antihypertensive medication classes compared to THZ


Table 3.52 Stroke events by study and antihypertensive class among persons with Diabetes

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcome N(\%) | N | Outcome N(\%) | N | Outcome N(\%) | N | Outcome N (\%) | N | Outcome N (\%) |
| DETAIL | Barnett ${ }^{(73)}$ | 2004 | 130 | 6 (4.6) |  |  | 120 | 6 (5.0) |  |  |  |  |
| -- | Fogari ${ }^{89}$ ) | 2002 | 120 | 2 (2.0) | 103 | 2 (1.9) |  |  |  |  |  |  |
| ALPINE | Lindholm ${ }^{(112)}$ | 2000 | 235 | 34 (14.5) | 231 | 29 (12.6) |  |  |  |  | 358 | 17 (3.0) |
| UKPDS | $\underset{(101)}{\text { UKPDS } 39}$ | 1998 | 400 | 21 (5.3) |  |  |  |  |  |  |  |  |
| ABCD | Estacio ${ }^{(66,67)}$ | 1998 | 235 | 7 (3.0) | 235 | 11 (4.7) |  |  |  |  |  |  |
| FACET | Tatti ${ }^{(77)}$ | 1998 | 189 | 4 (2.1) | 191 | 10 (5.2) |  |  |  |  |  |  |
| IDNT | Berl ${ }^{(115)}$ | 2003 |  |  | 567 | 15 (2.6) | 579 | 28 (4.8) |  |  |  |  |
| JMIC-B | Yui ${ }^{(81, ~ 82)}$ | 2004 | 173 | 6 (3.5) | 199 | 4 (2.0) |  |  |  |  |  |  |
| J-MIND | Baba ${ }^{(121)}$ | 2001 | 208 | 5 (2.4) | 228 | 2 (0.9) |  |  |  |  |  |  |

Table 3.53 Relative Treatment Effect of the Pooled Network Comparisons Among Persons with Diabetes Expressed as RR (95\% Credible Interval) of Stroke Associated with Antihypertensive Drug Class Comparisons

|  | ACE_DM | ARB_DM | BB_DM | CCB_DM |
| :--- | :--- | :--- | :--- | :--- |
| ACE_DM | ACE_DM | $1.3(0.51,3.3)$ | $0.86(0.3,2.8)$ | $0.83(0.49,1.4)$ |
| ARB_DM | $0.74(0.31,1.9)$ | ARB_DM | $0.63(0.17,2.8)$ | $0.62(0.26,1.6)$ |
| BB_DM | $1.2(0.36,3.3)$ | $1.6(0.35,5.8)$ | BB_DM | $0.97(0.26,3.1)$ |
| CCB_DM | $1.2(0.72,2.1)$ | $1.6(0.62,3.8)$ | $1(0.32,3.9)$ | CCB_DM |

Figure 3.31 Pooled Network Relative risks among Persons with Diabetes of Stroke associated with first line antihypertensive medication classes compared to THZ


## CARDIOVASCULAR COMPOSITE EVENTS

Table 3.54 Major CV events by antihypertensive class and study

| Study Acronym | Author | $\underset{r}{\text { Yea }}$ | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { CV events } \\ \mathrm{N}(\%) \\ \hline \end{gathered}$ | N | $\begin{gathered} \text { CV events } \\ \mathrm{N}(\%) \end{gathered}$ | N | $\begin{aligned} & \text { CV events } \\ & \text { N(\%) } \end{aligned}$ | N | $\begin{aligned} & \text { CV events } \\ & \mathrm{N}(\%) \end{aligned}$ | N | $\begin{aligned} & \text { CV events } \\ & \text { N(\%) } \end{aligned}$ |
| -- | Agarwal R ${ }^{\text {(94) }}$ | 2014 | 100 | 28 (28.0) |  |  |  |  |  |  | 100 | 16 (16.0) |
| ALLHAT | Cushman WC ${ }^{(124)}$ | 2012 | 5845 | 1075 (18.4) | 5864 | 1081 (18.4) |  |  | 9914 | 1745 (17.6) |  |  |
| J-MIND | Baba S ${ }^{(121)}$ | 2001 | 208 | 8 (3.8) | 228 | 5 (2.2) |  |  |  |  | 4588 | 588 (12.8) |
| JMIC-B | Yui $\mathrm{Y}^{(81, ~ 82)}$ | 2004 | 822 | 106 (12.9) | 828 | 116 (14.0) |  |  |  |  | 9618 | 852 (8.9) |
| STOP-HTN-2 | Hansson L ${ }^{(100)}$ | 1999 | 2205 | 437 (19.8) | 2196 | 450 (20.5) |  |  |  |  |  |  |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 20 (4.6) | 217 | 8 (3.7) |  |  |  |  | 441 | 22 (5.0) |
| MOSES | Schrader J ${ }^{(85)}$ | 2005 |  |  | 671 | 84 (12.5) | 681 | 60 (8.8) |  |  |  |  |
| IDNT | Berl $\mathrm{T}^{(115)}$ | 2003 |  |  | 567 | 161 (28.4) | 579 | 172 (29.7) |  |  |  |  |
| LIFE | Dahlof B ${ }^{(83)}$ | 2002 |  |  |  |  | 4605 | 508 (11.0) |  |  | 4588 | 588 (12.8) |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

| NICS-EH | Kuramoto K (118) | 1999 |  |  | 204 | 21 (10.3) |  |  | 210 | 18 (8.6) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MIDAS | Borhani N.O. ${ }^{(105)}$ | 1996 |  |  | 442 | 54 (12.2) |  |  | 441 | 33 (7.5) |  |  |
| SHELL | Malacco E ${ }^{\text {(99) }}$ | 2003 |  |  | 942 | 90 (9.6) |  |  | 940 | 88 (9.4) |  |  |
| ELSA | Zanchetti A ${ }^{\text {(74) }}$ | 2002 |  |  | 1177 | 69 (5.9) |  |  |  |  | 1157 | 73 (6.3) |
| $\begin{aligned} & \text { ASCOT- } \\ & \text { BPLA } \end{aligned}$ | Dahlof B ${ }^{(70)}$ | 2005 |  |  | 9639 | 753 (7.8) |  |  |  |  |  |  |
| VALUE | Julius S ${ }^{(102)}$ | 2004 |  |  | 7596 | 578 (7.6) | 7649 | 586 (7.7) |  |  |  |  |
| INSIGHT | Brown MJ ${ }^{(88)}$ | 2000 |  |  | 3157 | 383 (12.1) |  |  | 3164 | 397 (12.6) |  |  |
| FACET | Tatti $\mathrm{P}^{(77)}$ | 1998 | 189 | 14 (7.4) | 191 | 27 (14.1) |  |  |  |  |  |  |

Table 3.55 Outcome names for composite CV event outcomes

| Study Acronym | Author | Year | Outcome Name |
| :---: | :---: | :---: | :---: |
| -- | Agarwal R ${ }^{\text {(94) }}$ | 2014 | Composite, Myocardial Infarction or Composite, Stroke or Composite, Heart Failure, Congestive or Composite, Angina or Composite, Arrhythmia or Composite, Cardiac Arrest or Composite, Coronary Revascularization or Composite, Heart Valve Replacement |
| ALLHAT | Cushman WC ${ }^{(124)}$ | 2012 | Composite, Mortality, Cardiovascular or Composite, Myocardial Infarction, Non-Fatal, Requiring Hospitalization or Composite, Stroke, Non-Fatal, Requiring Hospitalization or Composite, Heart Failure, Non-Fatal, Requiring Hospitalization |
| J-MIND | Baba S ${ }^{(121)}$ | 2001 | Composite, Stroke, Ischemic or Composite, Angina or Composite, Myocardial Infarction or Composite, Heart Failure or Composite, Atrial Fibrillation |
| JMIC-B | Yuil $\mathrm{Y}^{(81,82)}$ | 2004 | Composite, Mortality, Cardiovascular or Composite, Mortality, Sudden Death or Composite, Myocardial Infarction, Non-Fatal or Composite, Angina, Requiring Hospitalization or Composite, Heart Failure, Non-Fatal, Requiring Hospitalization or Composite, Arrhythmia, Serious or Composite, Coronary Revascularization |
| STOP-HTN-2 | Hansson L ${ }^{(100)}$ | 1999 | Composite, Stroke, Fatal or Non-Fatal or Composite, Myocardial Infarction, Fatal or Non-Fatal or Composite, Mortality, Cardiovascular, Other |
| AASK | Norris K ${ }^{(46)}$ | 2006 | Composite, Mortality, Cardiovascular or Composite, Hospitalization, Cardiovascular, First |
| MOSES | Schrader J ${ }^{(85)}$ | 2005 | Composite, Acute Coronary Syndrome, First or Composite, Heart Failure, Fatal or Non-Fatal, First or Composite, Arrhythmia, Fatal, First or Composite, Embolism, Pulmonary, Fatal or Non-Fatal, First or Composite, Myocardial Infarction, Fatal or Non-Fatal, First |
| IDNT | Berl $\mathrm{T}^{(115)}$ | 2003 | Composite, Mortality, Cardiovascular or Composite, Myocardial Infarction, Non-Fatal or Composite, Heart Failure, Congestive, Non-Fatal or Composite, Stroke, Non-Fatal or Composite, Coronary Revascularization |
| LIFE | Dahlof B ${ }^{(83)}$ | 2002 | Composite, Mortality, Cardiovascular or Composite, Stroke, Non-Fatal or Composite, Myocardial Infarction, Non-Fatal |
| NICS-EH | Kuramoto $\mathrm{K}^{(118)}$ | 1999 | Composite, Myocardial Infarction, Non-Fatal or Composite, Angina or Composite, Heart Failure, Non-Fatal or Composite, Arrhythmia |
| MIDAS | Borhani N.O. ${ }^{(105)}$ | 1996 | Composite, Stroke, Fatal or Non-Fatal or Composite, Myocardial Infarction, Fatal or Non-Fatal or Composite, Mortality, Sudden Death or Composite, Heart Failure, Congestive, Fatal or Non-Fatal or Composite, Angina or Composite, Mortality, Cardiovascular, Other or Composite, Coronary Revascularization or Composite, Stroke, Transient Ischemic Attack, Non-Fatal or Composite, Atrial Fibrillation or Composite, Premature Ventricular |


|  |  |  | Contractions or Composite, Peripheral Revascularization or Composite, Heart Valve Replacement, Aortic or <br> Composite, Palpitations |
| :--- | :--- | :--- | :--- |
| SHELL | Malacco E (99) | 2003 | Composite, Stroke, Fatal or Non-Fatal or Composite, Mortality, Sudden Death or Composite, Myocardial Infarction, <br> Fatal or Non-Fatal or Composite, Heart Failure, Congestive, Fatal or Non-Fatal or Composite, Coronary <br> Revascularization |
| ELSA | Zanchetti A ${ }^{(74)}$ | 2002 | Composite, Myocardial Infarction, Non-Fatal or Composite, Stroke, Non-Fatal or Composite, Mortality, <br> Cardiovascular or Composite, Heart Failure, Requiring Hospitalization or Composite, Angina or Composite, Atrial <br> Fibrillation or Composite, Claudication |
| ASCOT-BPLA | Dahlof B ${ }^{\text {(70) }}$ | 2005 | Composite, Coronary Heart Disease, Fatal or Composite, Myocardial Infarction, Non-Fatal or Composite, <br> Myocardial Infarction, Non-Fatal, Silent or Composite, Angina, Unstable or Composite, Angina, Chronic, <br> Stable or Composite, Heart Failure, Fatal or Non-Fatal |
| VALUE | Julius S ${ }^{(102)}$ | 2004 | Composite, Heart Failure, Congestive, Requiring Hospitalization or Composite, Heart Failure, Congestive, Newly <br> Diagnosed, Requiring Hospitalization or Composite, Myocardial Infarction, Non-Fatal or Composite, Thrombolysis, <br> Emergency Procedure or Composite, Intervention to Prevent Myocardial Infarction |
| INSIGHT | Brown MJ ${ }^{(88)}$ | 2000 | Composite, Myocardial Infarction, Fatal or Non-Fatal or Composite, Mortality, Sudden Death or Composite, Stroke, <br> Fatal or Non-Fatal or Composite, Heart Failure, Fatal or Non-Fatal or Composite, Mortality, Cardiovascular |
| FACET | Tatti P ${ }^{(77)}$ | 1998 | Composite, Stroke, Fatal or Non-Fatal or Composite, Myocardial Infarction, Fatal or Non-Fatal or Composite, Angina, <br> Requiring Hospitalization or Composite, Adverse Events, Cardiovascular, Other or Composite, Coronary <br> Revascularization |

Table 3.56 CV composite event outcomes among Blacks by antihypertensive class and study

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | Outcome N (\%) | N | $\begin{gathered} \text { Outcome } \\ \text { N (\%) } \\ \hline \end{gathered}$ | N | Outcome N (\%) | N | Outcome N (\%) |
| AASK | Norris K ${ }^{(46)}$ | 2006 | 436 | 20 (4.6) | 217 | 8 (3.7) |  |  |  |  | 441 | 22 (5.0) |
| LIFE | Julius S ${ }^{(108)}$ | 2004 |  |  |  |  | 270 | 46 (17.0) |  |  | 263 | 29 (11.0) |
| ALLHAT | Wright ${ }^{(107)}$ | 2005 | 3210 | 444 (13.8) | 3213 | 407 (12.7) |  |  | 5369 | 655 (12.2) |  |  |
| - | Agarwal ${ }^{(94)}$ | 2014 | 100 | 28 (28.0) |  |  |  |  |  |  | 100 | 16 (16.0) |

Table 3.57 Relative Treatment Effect of the Pooled Network Comparisons Among Blacks Expressed as RR (95\% Credible Interval) of CV Events Associated with Antihypertensive Drug Class Comparisons

|  | ACE_BLACK | ARB_BLACK | BB_BLACK | CCB_BLACK | THZ_BLACK |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE_BLACK | ACE_BLACK | $1.22(0.488,3.24)$ | $0.769(0.442,1.37)$ | $0.864(0.468,1.38)$ | $0.856(0.457,1.56)$ |
| ARB_BLACK | $0.821(0.309,2.05)$ | ARB_BLACK | $0.636(0.299,1.3)$ | $0.706(0.231,1.86)$ | $0.702(0.216,1.93)$ |
| BB_BLACK | $1.3(0.73,2.26)$ | $1.57(0.77,3.35)$ | BB_BLACK | $1.11(0.513,2.16)$ |  |
| CCB_BLACK | $1.16(0.723,2.14)$ | $1.42(0.537,4.32)$ | $0.899(0.463,1.95)$ | CCB_BLACK | $0.11(0.478,2.39)$ |
| THZ_BLACK | $1.17(0.641,2.19)$ | $1.42(0.518,4.64)$ | $0.901(0.419,2.09)$ | $1.01(0.524,1.84)$ | THZ_BLACK |

© 2017 by the American College of Cardiology Foundation and the American Heart Association, Inc.

Table 3.58 CV Events by study and antihypertensive class among persons with Diabetes

| Study <br> Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcome N (\%) |
| ABCD | Estacio ${ }^{(66,67)}$ | 1998 | 235 | 47 (20.0) | 235 | 50 (21.2) |  |  |  |  |  |  |
| INSIGHT | Brown ${ }^{(88)}$ | 2000 |  |  | 649 | 54 (8.3) |  |  | 653 | 55 (8.4) |  |  |
| FACET | Tatti ${ }^{(77)}$ | 1998 | 189 | 14 (7.4) | 191 | 27 (14.1) |  |  |  |  |  |  |
| J-MIND | Baba ${ }^{(121)}$ | 2001 | 208 | 8 (3.8) | 228 | 5 (2.2) |  |  |  |  |  |  |
| ANBP2 | Chowdury ${ }^{(125)}$ | 2014 | 229 | 32 (14.0) |  |  |  |  | 212 | 46 (21.7) |  |  |

Table 3.59 Relative Treatment Effect of the Pooled Network Comparisons Among Persons with Diabetes Expressed as RR (95\% Credible Interval) of CV Events Associated with Antihypertensive Drug Class Comparisons

|  | ACE_DM | CCB_DM | THZ_DM |
| :--- | :--- | :--- | :--- |
| ACE_DM | ACE_DM | $1.2(0.73,1.9)$ | $1.3(0.71,2.5)$ |
| CCB_DM | $0.84(0.54,1.4)$ | CCB_DM | $1.1(0.62,2)$ |
| THZ_DM | $0.76(0.41,1.4)$ | $0.91(0.49,1.6)$ | THZ_DM |

Figure 3.32 Pooled Network Relative risks among Persons with Diabetes of CV Events associated with first line antihypertensive medication classes compared to THZ

Risk Ratio ( $95 \%$ Crl)


## MAJOR ADVERSE CARDIOVASCULAR EVENTS OUTCOMES

Table 3.60 Study-Specific Definitions of Major Adverse Cardiovascular Events (MACE)

| Acronym | Author | Year | MACE Definition |
| :--- | :--- | :--- | :--- |
| FACET | Tatti P. <br> (77) | 1998 | Any death or any vascular event or any procedure. The prospectively defined <br> events were categorized as follows: 1) all-cause mortality, 2) fatal or nonfatal <br> stroke, 3) fatal or nonfatal acute myocardial infarction, 4) hospitalized angina, 5) <br> any major vascular event described in 2, 3, or 4, 6) coronary artery bypass, 7) <br> percutaneous transluminal coronary angioplasty, and 8) any major vascular event <br> or procedure described in 5, 6 or 7. |
| VHAS | Rosei <br> E.A. ${ }^{(104)}$ | 1997 | Events including deaths by any cause, cardiovascular deaths (cardiac or <br> cerebrovascular), major nonfatal cardiovascular events (myocardial infarction and <br> stroke), and minor cardiovascular events (TIA, Angina, CHF, Claudication, <br> revascularization procedures) |
| MIDAS | Borhani <br> N.O. (105) | 1996 | Composite, Stroke, Fatal or Non-Fatal or Composite, Myocardial Infarction, Fatal <br> or Non-atal or Composite, Mortality, Sudden Death or Composite, Heart Failure, <br> Congestive, Fatal or Non-Fatal or Composite, Angina or Composite, Mortality, <br> Cardiovascular, Other or Composite, Coronary Revascularization or Composite, |
| Stroke, Transient Ischemic Attack, Non-Fatal or Composite, Atrial Fibrillation or |  |  |  |
| Composite, Premature Ventricular Contractions or Composite, Peripheral |  |  |  |
| Revascularization or Composite, Heart Valve Replacement, Aortic or Composite, |  |  |  |
| Palpitations |  |  |  |

Table 3.61 Major Adverse Cardiovascular Events (MACE) by study and antihypertensive class

| Study Acronym | Author | Year | CCB |  | BB |  | ACE |  | ARB |  | THZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | Outcomes |
| FACET | Tatti ${ }^{(77)}$ | 1998 | 191 | 34 (17.8\%) |  |  | 189 | $\begin{aligned} & \hline 20 \\ & (10.6 \%) \end{aligned}$ |  |  |  |  |
| MIDAS | Borhani ${ }^{(105)}$ | 1996 | 442 | 54 (12.2\%) |  |  |  |  |  |  | 441 | 33 (7.5\%) |
| VHAS | Rosei ${ }^{(104)}$ | 1997 | 707 | 39 (5.5\%) |  |  |  |  |  |  | 707 | 40 (5.7\%) |

Figure 3.33 Relative risks of MACE associated with first line antihypertensive medication classes compared to Thiazides


Table 3.62 Relative Treatment Effect of Pairwise Comparisons Expressed as RR (95\% Credible Interval) of MACE Associated with Antihypertensive Drug Class Comparisons (read top to left)

|  | ACE | CCB | THZ |
| :--- | :--- | :--- | :--- |
| ACE | ACE | $1.6(0.71,3.7)$ | $1.2(0.48,3.2)$ |
| CCB | $0.61(0.27,1.4)$ | CCB | $0.77(0.45,1.3)$ |
| THZ | $0.81(0.31,2.1)$ | $1.3(0.77,2.2)$ | THZ |

## RENAL EVENT OUTCOMES

Table 3.63 Renal events by antihypertensive class and study

| Study Acronym | Author | Year | ACE |  | CCB |  | ARB |  | THZ |  | BB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | $\begin{gathered} \text { CV } \\ \text { events } \\ \mathrm{N}(\%) \\ \hline \end{gathered}$ | N | $\begin{aligned} & \text { CV events } \\ & \text { N (\%) } \end{aligned}$ | N | $\begin{gathered} \text { CV } \\ \text { events } \\ \mathrm{N} \text { (\%) } \\ \hline \end{gathered}$ | N | $\begin{aligned} & \text { CV events } \\ & \text { N(\%) } \end{aligned}$ | N |  |
| ALLHAT | Rahman ${ }^{(126)}$ | 2005 | 9054 | 300 (3.3) | 9048 | 256 (2.8) |  |  | 15255 | 493 (3.2) |  |  |
| - | Zuchelli ${ }^{(127)}$ | 1992 | 60 | 7 (11.7) | 61 | 14 (23.0) |  |  |  |  |  |  |
| ESPIRAL | Marin ${ }^{(76)}$ | 2001 | 129 | 27 (20.9) | 112 | 40 (35.7) |  |  |  |  |  |  |
| VART | Narumi ${ }^{(103)}$ | 2011 |  |  | 511 | 4 (0.78) | 510 | 2 (0.39) |  |  |  |  |
| AASK | Wright ${ }^{(45)}$ | 2002 |  |  | 217 | 59 (27.2) |  |  |  |  | 441 | 117 (26.5) |

Table 3.64 Outcome descriptions for renal events

| Study <br> Acronym | Author | Year | Outcome Name |
| :--- | :--- | :--- | :--- |
| ALLHAT | Rahman ${ }^{(126)}$ | 2005 | Composite, End-Stage Renal Disease or Composite, <br> Halving of Estimated Glomerular Filtration Rate |
| - | Zuchelli $^{(127)}$ | 1992 | Dialysis |
| ESPIRAL | Marin $^{(76)}$ | 2001 | Composite, Doubling of Creatinine Levels or Composite, <br> Dialysis |
| VART | Narumi ${ }^{(103)}$ | 2011 | Composite, Doubling of Creatinine Levels or Composite, <br> Dialysis |
| AASK | Wright ${ }^{(45)}$ | 2002 | Composite, Halving of Estimated Glomerular Filtration <br> Rate or Composite, Glomerular Filtration Rate 25 <br> mL/min/1.73m², Decrease or Composite, End-Stage Renal |

Table 3.65 Relative Treatment Effect of Pooled Network Comparisons Expressed as RR (95\% Credible Interval) of Major CV Events Associated with Antihypertensive Drug Class Comparisons

|  | ACE | ARB | BB | CCB | THZ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ACE | ACE | $0.9(0.12,6.2)$ | $1.1(0.47,2.9)$ | $1.2(0.72,2.2)$ | $1.2(0.53,2.7)$ |
| ARB | $1.1(0.16,8.7)$ | ARB | $1.3(0.16,12)$ | $1.4(0.22,9.9)$ | $1.3(0.18,11)$ |
| BB | $0.87(0.34,2.1)$ | $0.79(0.082,6.4)$ | BB | $1.1(0.37,3.1)$ | $1(0.3,3.5)$ |
| CCB | $0.81(0.45,1.4)$ | $0.73(0.1,4.4)$ | $0.94(0.32,2.7)$ | CCB | $0.95(0.41,2.2)$ |
| THZ | $0.86(0.37,1.9)$ | $0.76(0.091,5.6)$ | $0.98(0.29,3.3)$ | $1(0.46,2.5)$ | THZ |

Figure 3.34 Relative Treatment Effects of Indirect Comparison Expressed as RR (95\% Credible Interval) of major CV events associated with first line antihypertensive medication classes compared to THZ


## References

1. Midanik LT, Resnick B, Hurley LB, et al. Home blood pressure monitoring for mild hypertensives. Public Health Rep. 1991; 106:85-9.
2. Soghikian K, Casper SM, Fireman BH, et al. Home blood pressure monitoring. Effect on use of medical services and medical care costs. Med Care. 1992; 30:855-65.
3. Staessen JA, Den Hond E, Celis H, et al. Antihypertensive treatment based on blood pressure measurement at home or in the physician's office: a randomized controlled trial. JAMA. 2004; 291:95564.
4. McManus RJ, Mant J, Roalfe A, et al. Targets and self monitoring in hypertension: randomised controlled trial and cost effectiveness analysis. BMJ (Clinical research ed.). 2005; 331:493.
5. Marquez-Contreras E, Martell-Claros N, Gil-Guillen V, et al. Efficacy of a home blood pressure monitoring programme on therapeutic compliance in hypertension: the EAPACUM-HTA study. Journal of hypertension. 2006; 24:169-75.
6. Verberk WJ, Kroon AA, Lenders JW, et al. Self-measurement of blood pressure at home reduces the need for antihypertensive drugs: a randomized, controlled trial. Hypertension (Dallas, Tex. : 1979). 2007; 50:1019-25.
7. Bosworth HB, Olsen MK, Grubber JM, et al. Two self-management interventions to improve hypertension control: a randomized trial. Ann Intern Med. 2009; 151:687-95.
8. Godwin M, Lam M, Birtwhistle R, et al. A primary care pragmatic cluster randomized trial of the use of home blood pressure monitoring on blood pressure levels in hypertensive patients with above target blood pressure. Fam Pract. 2010; 27:135-42.
9. Varis J and Kantola I. The choice of home blood pressure result reporting method is essential: Results mailed to physicians did not improve hypertension control compared with ordinary office-based blood pressure treatment. Blood Press. 2010; 19:319-24.
10. Oliver S, Jones J, Leonard D, et al. Improving adherence with amlodipine/atorvastatin therapy: IMPACT study. J Clin Hypertens (Greenwich). 2011; 13:598-604.
11. Hebert PL, Sisk JE, Tuzzio L, et al. Nurse-led disease management for hypertension control in a diverse urban community: a randomized trial. Journal of general internal medicine. 2012; 27:630-9.
12. McKinstry B, Hanley J, Wild S, et al. Telemonitoring based service redesign for the management of uncontrolled hypertension: multicentre randomised controlled trial. BMJ (Clinical research ed.). 2013; 346:f3030.
13. Hosseininasab M, Jahangard-Rafsanjani Z, Mohagheghi A, et al. Self-monitoring of blood pressure for improving adherence to antihypertensive medicines and blood pressure control: a randomized controlled trial. Am J Hypertens. 2014; 27:1339-45.
14. Margolis KL, O'Connor PJ, Morgan TM, et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes care. 2014; 37:17218.
15. Margolis KL, Palermo L, Vittinghoff E, et al. Intensive blood pressure control, falls, and fractures in patients with type 2 diabetes: the ACCORD trial. Journal of general internal medicine. 2014; 29:1599606.
16. Reboldi G, Angeli F, de Simone G, et al. Tight versus standard blood pressure control in patients with hypertension with and without cardiovascular disease. Hypertension (Dallas, Tex. : 1979). 2014; 63:475-82.
17. White CL, Szychowski JM, Pergola PE, et al. Can blood pressure be lowered safely in older adults with lacunar stroke? The Secondary Prevention of Small Subcortical Strokes study experience. Journal of the American Geriatrics Society. 2015; 63:722-9.
18. Palacio S, McClure LA, Benavente OR, et al. Lacunar strokes in patients with diabetes mellitus: risk factors, infarct location, and prognosis: the secondary prevention of small subcortical strokes study. Stroke. 2014; 45:2689-94.
19. Pearce LA, McClure LA, Anderson DC, et al. Effects of long-term blood pressure lowering and dual antiplatelet treatment on cognitive function in patients with recent lacunar stroke: a secondary analysis from the SPS3 randomised trial. The Lancet. Neurology. 2014; 13:1177-85.
20. Rakugi H, Ogihara T, Goto Y, et al. Comparison of strict- and mild-blood pressure control in elderly hypertensive patients: a per-protocol analysis of JATOS. Hypertension research : official journal of the Japanese Society of Hypertension. 2010; 33:1124-8.
21. Holman RR, Paul SK, Bethel MA, et al. Long-term follow-up after tight control of blood pressure in type 2 diabetes. The New England journal of medicine. 2008; 359:1565-76.
22. Kjeldsen SE, Kolloch RE, Leonetti G, et al. Influence of gender and age on preventing cardiovascular disease by antihypertensive treatment and acetylsalicylic acid. The HOT study. Hypertension Optimal Treatment. Journal of hypertension. 2000; 18:629-42.
23. Zanchetti A, Hansson L, Clement D, et al. Benefits and risks of more intensive blood pressure lowering in hypertensive patients of the HOT study with different risk profiles: does a J-shaped curve exist in smokers? Journal of hypertension. 2003; 21:797-804.
24. Contreras G, Greene T, Agodoa LY, et al. Blood pressure control, drug therapy, and kidney disease. Hypertension (Dallas, Tex. : 1979). 2005; 46:44-50.
25. Appel LJ, Wright JT, Jr., Greene T, et al. Intensive blood-pressure control in hypertensive chronic kidney disease. The New England journal of medicine. 2010; 363:918-29.
26. Davis EM, Appel LJ, Wang X, et al. Limitations of analyses based on achieved blood pressure: lessons from the African American study of kidney disease and hypertension trial. Hypertension (Dallas, Tex. : 1979). 2011; 57:1061-8.
27. Ku E, Glidden DV, Johansen KL, et al. Association between strict blood pressure control during chronic kidney disease and lower mortality after onset of end-stage renal disease. Kidney international. 2015; 87:1055-60.
28. Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus: ACCORD. The New England journal of medicine. 2010; 362:1575-85.
29. Ismail-Beigi F, Craven TE, O'Connor PJ, et al. Combined intensive blood pressure and glycemic control does not produce an additive benefit on microvascular outcomes in type 2 diabetic patients. Kidney international. 2012; 81:586-94.
30. Wright JT, Jr., Williamson JD, Whelton PK, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. The New England journal of medicine. 2015; 373:2103-16.
31. Verdecchia P, Staessen JA, Angeli F, et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet (London, England). 2009; 374:525-33.
32. Benavente OR, Coffey CS, Conwit R, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet (London, England). 2013; 382:507-15.
33. Ogihara T, Saruta T, Rakugi H, et al. Target blood pressure for treatment of isolated systolic hypertension in the elderly: valsartan in elderly isolated systolic hypertension study. Hypertension (Dallas, Tex. : 1979). 2010; 56:196-202.
34. Hayashi K, Saruta T, Goto Y, et al. Impact of renal function on cardiovascular events in elderly hypertensive patients treated with efonidipine. Hypertension research : official journal of the Japanese Society of Hypertension. 2010; 33:1211-20.
35. Jatos Study Group. Principal results of the Japanese trial to assess optimal systolic blood pressure in elderly hypertensive patients (JATOS). Hypertension research : official journal of the Japanese Society of Hypertension. 2008; 31:2115-27.
36. Schrier RW, Abebe KZ, Perrone RD, et al. Blood pressure in early autosomal dominant polycystic kidney disease. The New England journal of medicine. 2014; 371:2255-66.
37. Asayama K, Ohkubo T, Metoki H, et al. Cardiovascular outcomes in the first trial of antihypertensive therapy guided by self-measured home blood pressure. Hypertension research : official journal of the Japanese Society of Hypertension. 2012; 35:1102-10.
38. Ruggenenti P, Perna A, Loriga G, et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet (London, England). 2005; 365:939-46.
39. Wei Y, Jin Z, Shen G, et al. Effects of intensive antihypertensive treatment on Chinese hypertensive patients older than 70 years. J Clin Hypertens (Greenwich). 2013; 15:420-7.
40. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ (Clinical research ed.). 1998; 317:70313.
41. Estacio RO, Jeffers BW, Gifford N, et al. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes care. 2000; 23 Suppl 2:B54-64.
42. Schrier RW, Estacio RO, Esler A, et al. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney international. 2002; 61:1086-97.
43. Savage S, Johnson Nagel N, Estacio RO, et al. The ABCD (Appropriate Blood Pressure Control in Diabetes) trial. Rationale and design of a trial of hypertension control (moderate or intensive) in type II diabetes. Online J Curr Clin Trials. 1993; Doc No 104:[6250 words; 128 paragraphs].
44. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet (London, England). 1998; 351:1755-62.
45. Wright JT, Jr., Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. Jama. 2002; 288:2421-31.
46. Norris K, Bourgoigne J, Gassman J, et al. Cardiovascular outcomes in the African American Study of Kidney Disease and Hypertension (AASK) Trial. Am J Kidney Dis. 2006; 48:739-51.
47. Sarnak MJ, Greene T, Wang X, et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med. 2005; 142:342-51.
48. Cardio-Sis Study G. Randomized study of traditional versus aggressive systolic blood pressure control (Cardio-Sis): rationale, design and characteristics of the study population. J Hum Hypertens. 2008; 22:243-51.
49. Benavente OR, White CL, Pearce L, et al. The Secondary Prevention of Small Subcortical Strokes (SPS3) study. Int J Stroke. 2011; 6:164-75.
50. Ogihara T, Saruta T, Matsuoka H, et al. valsartan in elderly isolated systolic hypertension (VALISH) study: rationale and design. Hypertension research : official journal of the Japanese Society of Hypertension. 2004; 27:657-61.
51. Chapman AB, Torres VE, Perrone RD, et al. The HALT polycystic kidney disease trials: design and implementation. Clin J Am Soc Nephrol. 2010; 5:102-9.
52. Fujiwara T, Nishimura T, Ohkuko T, et al. Rationale and design of HOMED-BP Study: hypertension objective treatment based on measurement by electrical devices of blood pressure study. Blood Press Monit. 2002; 7:77-82.
53. UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetologia. 1991; 34:877-90.
54. Wright JT, Jr., Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002; 288:2421-31.
55. Davis EM, Appel LJ, Wang X, et al. Limitations of analyses based on achieved blood pressure: lessons from the African American study of kidney disease and hypertension trial. Hypertension (Dallas, Tex. : 1979). 2011; 57:1061-8.
56. Agodoa LY, Appel L, Bakris GL, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. Jama. 2001; 285:2719-28.
57. Lv J, Neal B, Ehteshami P, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: a systematic review and meta-analysis. PLoS Med. 2012; 9:e1001293.
58. Brunstrom M and Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ (Clinical research ed.). 2016; 352:i717.
59. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet (London, England). 2016; 387:957-67.
60. Thomopoulos C, Parati G and Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. Journal of hypertension. 2016; 34:613-22.
61. Verdecchia P, Angeli F, Gentile G, et al. More Versus Less Intensive Blood Pressure-Lowering StrategyNovelty and Significance. Hypertension (Dallas, Tex. : 1979). 2016; 68:642-53.
62. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet (London, England). 2016; 387:43543.
63. Bangalore S, Toklu B, Gianos E, et al. Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials. Am J Med. 2017; 130:707-19.e8.
64. Bavishi C, Bangalore S and Messerli FH. Outcomes of intensive blood pressure lowering in older hypertensive patients. Journal of the American College of Cardiology. 2017; 69:486-93.
65. Weiss J, Freeman M, Low A, et al. Benefits and Harms of Intensive Blood Pressure Treatment in Adults Aged 60 Years or Older: A Systematic Review and Meta-analysis. Ann Intern Med. 2017.
66. Estacio RO, Jeffers BW, Hiatt WR, et al. The Effect of Nisoldipine as Compared with Enalapril on Cardiovascular Outcomes in Patients with Non-Insulin-Dependent Diabetes and Hypertension. New England Journal of Medicine. 1998; 338:645-52.
67. Estacio RO and Schrier RW. Antihypertensive therapy in type 2 diabetes: implications of the appropriate blood pressure control in diabetes (ABCD) trial. Am J Cardiol. 1998; 82:9r-14r.
68. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Jama. 2002; 288:2981-97.
69. Wing LM, Reid CM, Ryan P, et al. A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. The New England journal of medicine. 2003; 348:583-92.
70. Dahlof B, Sever PS, Poulter NR, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet (London, England). 2005; 366:895-906.
71. Ruggenenti P, Fassi A, Ilieva AP, et al. Preventing Microalbuminuria in Type 2 Diabetes. New England Journal of Medicine. 2004; 351:1941-51.
72. Spinar J, Vitovec J, Soucek M, et al. CORD: COmparsion of Recommended Doses of ACE inhibitors and angiotensin II receptor blockers. Vnitr Lek. 2009; 55:481-8.
73. Barnett AH, Bain SC, Bouter P, et al. Angiotensin-Receptor Blockade versus ConvertingEnzyme Inhibition in Type 2 Diabetes and Nephropathy. New England Journal of Medicine. 2004; 351:1952-61.
74. Zanchetti A, Bond MG, Hennig M, et al. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation. 2002; 106:2422-7.
75. Terpstra WF, May JF, Smit AJ, et al. Effects of amlodipine and lisinopril on intima-media thickness in previously untreated, elderly hypertensive patients (the ELVERA trial). Journal of hypertension. 2004; 22:1309-16.
76. Marin R, Ruilope LM, Aljama P, et al. A random comparison of fosinopril and nifedipine GITS in patients with primary renal disease. Journal of hypertension. 2001; 19:1871-6.
77. Tatti P, Pahor M, Byington RP, et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes care. 1998; 21:597-603.
78. Wilhelmsen L, Berglund G, Elmfeldt D, et al. Beta-blockers versus diuretics in hypertensive men: main results from the HAPPHY trial. Journal of hypertension. 1987; 5:561-72.
79. Bulpitt CJ, Beckett NS, Cooke J, et al. Results of the pilot study for the Hypertension in the Very Elderly Trial. Journal of hypertension. 2003; 21:2409-17.
80. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. New England Journal of Medicine. 2001; 345:851-60.
81. Yui Y, Sumiyoshi T, Kodama K, et al. Nifedipine retard was as effective as angiotensin converting enzyme inhibitors in preventing cardiac events in high-risk hypertensive patients with diabetes and coronary artery disease: the Japan Multicenter Investigation for Cardiovascular Diseases-B (JMIC-B) subgroup analysis. Hypertension research : official journal of the Japanese Society of Hypertension. 2004; 27:449-56.
82. Yui Y, Sumiyoshi T, Kodama K, et al. Comparison of nifedipine retard with angiotensin converting enzyme inhibitors in Japanese hypertensive patients with coronary artery disease: the Japan Multicenter Investigation for Cardiovascular Diseases-B (JMIC-B) randomized trial. Hypertension research : official journal of the Japanese Society of Hypertension. 2004; 27:181-91.
83. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet (London, England). 2002; 359:995-1003.
84. Gosse P, Sheridan DJ, Zannad F, et al. Regression of left ventricular hypertrophy in hypertensive patients treated with indapamide SR 1.5 mg versus enalapril 20 mg : the LIVE study. Journal of hypertension. 2000; 18:1465-75.
85. Schrader J, Luders S, Kulschewski A, et al. Morbidity and Mortality After Stroke, Eprosartan Compared with Nitrendipine for Secondary Prevention: principal results of a prospective randomized controlled study (MOSES). Stroke. 2005; 36:1218-26.
86. MRC trial of treatment of mild hypertension: principal results. Medical Research Council Working Party. British medical journal (Clinical research ed.). 1985; 291:97-104.
87. Medical Research Council trial of treatment of hypertension in older adults: principal results. MRC Working Party. BMJ (Clinical research ed.). 1992; 304:405-12.
88. Brown MJ, Palmer CR, Castaigne A, et al. Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet (London, England). 2000; 356:366-72.
89. Fogari R, Preti P, Zoppi A, et al. Effects of amlodipine fosinopril combination on microalbuminuria in hypertensive type 2 diabetic patients. Am J Hypertens. 2002; 15:1042-9.
90. Rosendorff C, Dubiel R, Xu J, et al. Comparison of olmesartan medoxomil versus amlodipine besylate on regression of ventricular and vascular hypertrophy. Am J Cardiol. 2009; 104:359-65.
91. Cacciapuoti F, Perrone N, Diaspro R, et al. Slowing of mitral valve annular calcium in systemic hypertension by nifedipine and comparisons with enalapril and atenolol. Am J Cardiol. 1993; 72:1038-42. 92. Zucchelli P, Zuccala A and Gaggi R. Comparison of the effects of ACE inhibitors and calcium channel blockers on the progression of renal failure. Nephrol Dial Transplant. 1995; 10 Suppl 9:46-51.
92. Yilmaz R, Altun B, Kahraman S, et al. Impact of amlodipine or ramipril treatment on left ventricular mass and carotid intima-media thickness in nondiabetic hemodialysis patients. Ren Fail. 2010; 32:903-12.
93. Agarwal R, Sinha AD, Pappas MK, et al. Hypertension in hemodialysis patients treated with atenolol or lisinopril: a randomized controlled trial. Nephrol Dial Transplant. 2014; 29:672-81.
94. Omvik P, Thaulow E, Herland OB, et al. Double-blind, parallel, comparative study on quality of life during treatment with amlodipine or enalapril in mild or moderate hypertensive patients: a multicentre study. Journal of hypertension. 1993; 11:103-13.
95. Bremner AD, Baur M, Oddou-Stock P, et al. Valsartan: long-term efficacy and tolerability compared to lisinopril in elderly patients with essential hypertension. Clin Exp Hypertens. 1997; 19:126385.
96. Sareli P, Radevski IV, Valtchanova ZP, et al. Efficacy of different drug classes used to initiate antihypertensive treatment in black subjects: results of a randomized trial in Johannesburg, South Africa. Arch Intern Med. 2001; 161:965-71.
97. Marre M, Puig JG, Kokot F, et al. Equivalence of indapamide SR and enalapril on microalbuminuria reduction in hypertensive patients with type 2 diabetes: the NESTOR Study. Journal of hypertension. 2004; 22:1613-22.
98. Malacco E, Mancia G, Rappelli A, et al. Treatment of isolated systolic hypertension: the SHELL study results. Blood Press. 2003; 12:160-7.
99. Hansson L, Lindholm LH, Ekbom T, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet (London, England). 1999; 354:1751-6.
100. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. BMJ (Clinical research ed.). 1998; 317:713-20.
101. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet (London, England). 2004; 363:2022-31.
102. Narumi H, Takano H, Shindo S, et al. Effects of valsartan and amlodipine on cardiorenal protection in Japanese hypertensive patients: the Valsartan Amlodipine Randomized Trial. Hypertension research : official journal of the Japanese Society of Hypertension. 2011; 34:62-9.
103. Rosei EA, Dal Palu C, Leonetti G, et al. Clinical results of the Verapamil inHypertension and Atherosclerosis Study. VHAS Investigators. Journal of hypertension. 1997; 15:1337-44.
104. Borhani NO, Mercuri M, Borhani PA, et al. Final outcome results of the Multicenter Isradipine Diuretic Atherosclerosis Study (MIDAS). A randomized controlled trial. Jama. 1996; 276:785-91.
105. Katayama S, Kawamori R, Iwamoto Y, et al. In half of hypertensive diabetics, co-administration of a calcium channel blocker and an angiotensin-converting enzyme inhibitor achieved a target blood pressure of $<130 / 80 \mathrm{mmHg}$ : the azelnidipine and temocapril in hypertensive patients with type 2 diabetes (ATTEST) study. Hypertension research : official journal of the Japanese Society of Hypertension. 2008; 31:1499-508.
106. Wright JT, Jr., Dunn JK, Cutler JA, et al. Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril. Jama. 2005; 293:1595-608.
107. Julius S, Alderman MH, Beevers G, et al. Cardiovascular risk reduction in hypertensive black patients with left ventricular hypertrophy: the LIFE study. Journal of the American College of Cardiology. 2004; 43:1047-55.
108. Yamal JM, Oparil S, Davis BR, et al. Stroke outcomes among participants randomized to chlorthalidone, amlodipine or lisinopril in ALLHAT. J Am Soc Hypertens. 2014; 8:808-19.
109. Oparil S, Davis BR, Cushman WC, et al. Mortality and morbidity during and after ALLHAT: Results by gender. Hypertension (Dallas, Tex. : 1979). 2013; 61:977-86.
110. Os I, Franco V, Kjeldsen SE, et al. Effects of losartan in women with hypertension and left ventricular hypertrophy: results from the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension (Dallas, Tex. : 1979). 2008; 51:1103-8.
111. Lindholm LH, Hansson L, Ekbom T, et al. Comparison of antihypertensive treatments in preventing cardiovascular events in elderly diabetic patients: results from the Swedish Trial in Old Patients with Hypertension-2. STOP Hypertension-2 Study Group. Journal of hypertension. 2000; 18:1671-5.
112. Lindholm LH, Ibsen H, Borch-Johnsen K, et al. Risk of new-onset diabetes in the Losartan Intervention For Endpoint reduction in hypertension study. Journal of hypertension. 2002; 20:1879-86. 114. Lindholm LH, Ibsen H, Dahlof B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet (London, England). 2002; 359:1004-10.
113. Berl T, Hunsicker LG, Lewis JB, et al. Cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med. 2003; 138:542-9.
114. Yamashita T, Inoue H, Okumura K, et al. Randomized trial of angiotensin II-receptor blocker vs. dihydropiridine calcium channel blocker in the treatment of paroxysmal atrial fibrillation with hypertension (J-RHYTHM II study). Europace. 2011; 13:473-9.
115. Du H, Fan J, Ling Z, et al. Effect of nifedipine versus telmisartan on prevention of atrial fibrillation recurrence in hypertensive patients. Hypertension (Dallas, Tex. : 1979). 2013; 61:786-92.
116. Randomized double-blind comparison of a calcium antagonist and a diuretic in elderly hypertensives. National Intervention Cooperative Study in Elderly Hypertensives Study Group. Hypertension (Dallas, Tex. : 1979). 1999; 34:1129-33.
117. Lindholm LH, Persson M, Alaupovic P, et al. Metabolic outcome during 1 year in newly detected hypertensives: results of the Antihypertensive Treatment and Lipid Profile in a North of Sweden Efficacy Evaluation (ALPINE study). Journal of hypertension. 2003; 21:1563-74.
118. Zanchetti A, Crepaldi G, Bond MG, et al. Different effects of antihypertensive regimens based on fosinopril or hydrochlorothiazide with or without lipid lowering by pravastatin on progression of asymptomatic carotid atherosclerosis: principal results of PHYLLIS--a randomized double-blind trial. Stroke. 2004; 35:2807-12.
119. Baba S. Nifedipine and enalapril equally reduce the progression of nephropathy in hypertensive type 2 diabetics. Diabetes Res Clin Pract. 2001; 54:191-201.
120. Collier DJ, Poulter NR, Dahlof B, et al. Impact of amlodipine-based therapy among older and younger patients in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA). Journal of hypertension. 2011; 29:583-91.
121. Peart S. Results of MRC (UK) trial of drug therapy for mild hypertension. Clin Invest Med. 1987; 10:616-20.
122. Cushman WC, Davis BR, Pressel SL, et al. Mortality and morbidity during and after the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. J Clin Hypertens (Greenwich). 2012; 14:20-31.
123. Chowdhury EK, Owen A, Ademi Z, et al. Short- and Long-Term Survival in Treated Elderly Hypertensive Patients With or Without Diabetes: Findings From the Second Australian National Blood Pressure Study. American Journal of Hypertension. 2014; 27:199-206.
124. Rahman M, Pressel S, Davis BR, et al. Renal outcomes in high-risk hypertensive patients treated with an angiotensin-converting enzyme inhibitor or a calcium channel blocker vs a diuretic: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2005; 165:936-46.
125. Zucchelli P, Zuccala A, Borghi M, et al. Long-term comparison between captopril and nifedipine in the progression of renal insufficiency. Kidney international. 1992; 42:452-8.

[^0]:    Note: Sensitivity analyses were conducted to further understand the effect of a lower target BP versus any higher target BP on populations of interest which included 1) only patients with diabetes, 2 ) only patients with CKD, or 3 ) a study population with mean age $\geq 60$ years at baseline. Sensitivity analyses were conducted if three or more studies included the outcome and population of interest. Studies included in these analyses are listed in the footnotes. Additional information on study characteristics may be found in Table 2.5.
    a. ACCORD (28), UKPDS (40), and ABCD (41).
    b. REIN-2 (38), AASK (54), and MDRD (47)
    c. ACCORD (28), SPRINT (30), Cardio-Sis (31), SPS3 (32), VALISH (33), JATOS (35), Wei et al (39), and HOT (44).
    d. ACCORD (28), SPRINT (30), VALISH (33), JATOS (35), and Wei et al (39).
    e. ACCORD (28), SPRINT (30), Cardio-Sis (31), VALISH (33), and Wei et al (39).
    f. ACCORD (28), SPRINT (30), Cardio-Sis (31), SPS3 (32), VALISH (33), JATOS (35), and Wei et al (39).
    g. ACCORD (28), SPRINT (30), JATOS (35), and Wei et al (39).
    h. ACCORD (34), SPRINT (30), VALISH (33), and JATOS (34)

