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Abstract

While record linkage can expand analyses performable from survey microdata, it also incurs
greater risk of privacy-encroaching disclosure. One way to mitigate this risk is to replace some

of the information added through linkage with synthetic data elements. This paper describes a
case study using the National Hospital Care Survey (NHCS), which collects patient records under
a pledge of protecting patient privacy from a sample of U.S. hospitals for statistical analysis
purposes. The NHCS data were linked to the National Death Index (NDI) to enhance the survey
with mortality information. The added information from NDI linkage enables survival analyses
related to hospitalization, but as the death information includes dates of death and detailed causes
of death, having it joined with the patient records increases the risk of patient re-identification
(albeit only for deceased persons). For this reason, an approach was tested to develop synthetic
data that uses models from survival analysis to replace vital status and actual dates-of-death

with synthetic values and uses classification tree analysis to replace actual causes of death with
synthesized causes of death. The degree to which analyses performed on the synthetic data
replicate results from analysis on the actual data is measured by comparing survival analysis
parameter estimates from both data files. Because synthetic data only have value to the degree that
they can be used to produce statistical estimates that are like those based on the actual data, this
evaluation is an essential first step in assessing the potential utility of synthetic mortality data.
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1. Introduction

The National Center for Health Statistics (NCHS) has established a Data Linkage Program
designed to maximize the scientific value of the Center’s health surveys by linking its
health survey data with health-related administrative data resources. These linked files
create new longitudinal data resources that expand the analytic potential beyond the
individual data sources and create new research opportunities to understand the factors
that influence disability, health care utilization, morbidity, and mortality among different
U.S. subpopulations. NCHS has previously linked several of its large population health
surveys, including the National Health Interview Survey (NHIS) and the National Health
and Nutrition Examination Surveys (NHANES) to mortality data from the National Death
Index (NDI) (NCHS NDI). In an effort to maximize access to linked mortality data, NCHS
has created public-use linked mortality files for NHIS and NHANES data that contain
partially, not fully, synthetic mortality information, including date and cause of death data
(https://www.cdc.gov/nchs/data-linkage/mortality-public.htm).

NCHS recently completed a mortality linkage with data on patients that received inpatient
(IP) or emergency department (ED) services at sampled hospitals participating in the
National Hospital Care Survey (NHCS). The NHCS collects complete sets of encounter
records for participating hospitals, which also contain patient identification information,
such as name, address, birth date, and Social Security Number (SSN), to facilitate linkage
to other sources of health-related data. Patient data collected in the 2016 NHCS were linked
to the NDI to obtain information on mortality status and cause of death for deaths occurring
after the hospitalization through the subsequent calendar year (2017) (NCHS 2019).

While the linked patient records and NDI records are putatively for patients who have died,
NCHS data confidentiality standards require patient information (including that for persons
presumed to be deceased) to be unidentifiable for data users. However, if data were made
available that include a patient’s date-of-birth, date-of-death, and other demographics, such
as sex and state-of-residence, re-identification of the patient may be enabled, even when
withholding direct identifiers such as name and SSN. Additionally, the linked NDI records
add detailed cause of death information to patient records which further increases the risk
of re-identification. Due to requirements to protect the confidentiality of the NHCS data,
restricted-use versions of the Linked Mortality Files (LMFs) were made available only
through the NCHS and Federal Statistical Research Data Centers (RDCs).

NCHS is exploring making more detailed mortality information, including age of death

and cause of death, more widely available to researchers. One way of achieving this is

by creating a synthetic linked NHCS-NDI file that maintains certain associations between
variables and making the file publicly available via the NCHS website. This paper will serve
as a case study to explore the methodology, using the linked NHCS-NDI data as an example,
of how synthetic data could be generated and evaluated to determine its concordance with
the actual data. This paper does not address whether the generated synthetic data file
adequately reduces the risk of re-identification once the file is produced, but rather takes an
essential first step in evaluating whether the proposed synthetic data can produce statistically
valid results.
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The data elements that will be synthesized include vital status (alive or dead), date of death,
the underlying or primary cause of death from the top nine leading causes of death and all
residual deaths, and indicators of the presence of multiple or contributing causes of death for
diabetes, hypertension, or both (NHCS NDI). The presence of diabetes and hypertension in
the multiple cause-of-death codes were included, as these conditions are frequently reported
as contributing causes of death.

2. Methods

2.1 Data sources

2.1.1 NHCS description—The NHCS is an establishment survey that collects IP, ED,
and outpatient department (OPD) encounter-level data from sampled hospitals. NHCS is
one of the National Healthcare Surveys, a family of surveys covering a wide spectrum

of healthcare delivery settings from ambulatory and OPD to hospital and long-term care
providers. The goal of NHCS is to provide reliable and timely healthcare utilization data for
hospital-based settings, including prevalence of conditions, health status of patients, health
services utilization, and substance-involved ED visits (NCHS NHCS).

From participating hospitals, NHCS collects data on all IP and ambulatory (ED and

OPD) care visits occurring during the calendar year. The 2016 NCHS data collection
procedures provided hospitals with the option to submit data in the form of electronic health
records (EHR) or as UB-04 claims records. NHCS collects patient personally identifiable
information (P1I) such as name, date of birth, and SSN, which allows for the linkage of each
patient’s health care encounters within a surveyed hospital as well as to other external data
sources, such as the NDI. The analysis described in this paper includes only IP and ED visits
- other, non-ED OPD visits have been excluded because OPD visits were not included in the
2016 NHCS- 2016/2017 NDI linkage. NHCS is not currently nationally representative due
to low response rates, 158/581=27%1. Still, linking NHCS with the NDI does allow for new
analyses, such as studying mortality post hospital discharge, along with specific causes of
death. (NCHS 2019)

2.1.2 NDI description—The NDI is a centralized database of United States death record
information on file in state vital statistics offices. Working with these state offices, NCHS
established the NDI as a resource to aid epidemiologists and other health and medical
investigators with their mortality ascertainment activities. The NDI became operational in
1981 and includes death record information for all persons officially known to have died in
the U.S. or a U.S. territory from 1979 onward. The records, which are compiled annually,
include detailed information on the underlying and multiple or contributing causes of death
(NHCS NDI).

2.1.3 Linked data—The linkage of the 2016 NHCS to the 2016/2017 NDI has been
described elsewhere (NCHS 2019). Briefly, patients with sufficient P112 were linked in

1Responding hospitals were those providing records for at least 50 encounters covering at least six months of the year.
Sufficient Pl is defined as having two of the following three items: valid date of birth (month, day, and year), name (first, middle,
and last), and/or a valid format 9-digit SSN. See (NCHS 2019, p. 5).
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two steps, using deterministic and probabilistic linkage techniques. About five percent of
the 2016 NHCS linkage eligible patients linked to the 2016/2017 NDI with the largest
percentage of links in the 65 or older age category (NCHS 2019). The total number of 2016
NHCS patients identified as deceased through NDI linkage was 212,155.

2.2 Generation of synthetic data

The generation of the synthetic data relied on two main steps and then an assessment. These
steps are outlined below.

2.2.1 Step 1. Modeling occurrence and date of death—The first stage of the
synthetic data generation relates to assigning occurrence and date of death to certain patient
records. The patients who are assigned a status of assumed deceased during the follow-up
period do not always represent the same patients who were linked to NDI death records.
Similarly, patients who are assigned a vital status of dead in the synthetic data may in fact be
presumed alive based on a non-match status to an NDI record. However, it is important that
the synthesized death status reflects the propensity of death as it depends on sex, age, health
conditions, and other factors related to mortality. For this reason, a Cox proportional hazard
model (Cox 1972) (estimated using SAS’s PHREG procedure) (SAS PHREG) was used to
generate death status.

In this context it was decided to use the known diagnoses from the latest survey-collected
patient encounter record, whether this is an IP or ED visit. The Charlson Comorbidity Index
scoring system was designed as a weighted composite index for predicting mortality risk
within 1 year of hospitalization for patients with specific co-morbidities (Charlson 1987).
The Charlson index is meant to reflect near-term mortality experience based on the presence
of one or more of 17 major diagnostic condition categories. Each of these categories has a
weight associated with it and the index value is equal to the sum of these weights (Table 1).
Code developed by the University of Calgary (Sundararajan 2004) was used both to create
the 17 indicator variables, apply the weights, and compute the composite index value.

Using these recoded condition categories rather than specific diagnoses seemed more
suitable for regression analyses, which would have otherwise required estimating a
regression parameter for thousands of diagnosis code levels. Additionally, the risk associated
with these conditions was not expected to be necessarily linearly additive. That is, a
computed risk level

Charlson Index = )" C; - W; (Eq. 1)

C;— 0/1 indicator for presence of condition 7
W;—Weight for condition C;

associated with having both congestive heart failure and pulmonary disease is likely more
than the sum of having these conditions individually. For this reason, both the 17 condition
indicators (Variables # 21-37, as shown in the Appendix) and a Charlson index value
(Variables # 38-43), which was top coded at a score of six so as to address collinearity
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of these two variable sets (i.e., so the index value is not a linear function of the present
conditions) were included in the synthetic data generation model to represent the level of
comorbidities:

Charlson Index Value = min{Charlson Index, 6}

Incorporating these Charlson values, a multivariable survival analysis regression procedure,
SAS’s PHREG (proportional hazard regression), was used to estimate the risk of dying
based on the known characteristics of the patient, hospital utilization, and hospital
characteristics (SAS PHREG). Patient characteristics included age at discharge, sex, Census
division of residence3, as noted on the claim or EHR, and imputed race and ethnicity.
Modeling for race and ethnicity was conducted based on Census distribution of last names
(reported on claim or EHR) combined with tract-level race/ethnicity distributions from 2010
Decennial Census in a probabilistic model (Fiscella 2006). Categories included Hispanic,
non-Hispanic white, non-Hispanic black or African American, non-Hispanic American
Indian or Alaskan Native, and non-Hispanic Asian or Pacific Islander. Hospital utilization
was defined as the patient’s length of inpatient stay in the calendar year (top coded at

50) and the number of ED visits in the calendar year (top coded to five) for the patient.
Hospital characteristics were defined by, ownership status (for profit, government, and
non-profit), type of hospital (general acute, children’s, psychiatric, and Long-Term Acute
Care and Rehabilitation), urban-rural classification (large central metropolitan, large fringe
metropolitan, medium metropolitan, small metropolitan, micropolitan, and non-core) and
categories of bed size (1 — 25, 26 — 100, 101 — 500, and more than 500).

For each patient, the regression procedure estimates a linear predictor of death risk.
Additionally, the procedure has been set to compute baseline survival rates for each day
subsequent to the latest known discharge. Thus, for any patient / the probability of surviving
to day tis equal to:

At X;) = Ao(t)exp(X; - B) @

X;-p= ZZ’; 1 Xi k- Bi, krepresents index for each of 69 covariates shown in Appendix.

where Ag(J) is the baseline survival rate for time # gis the vector of regression parameters,
and Xjis the set of predictors for patient /. In this implementation of the Cox proportional
hazard estimation model, the Breslow estimator is used to estimate the baseline hazard
function. (Breslow 1972) (SAS PHREG).

To impute the death status we used the survival probability function. To start, a date of death
or a date of censoring for each patient was imputed by drawing a pseudo-random value
from a standard uniform distribution («~wniform[0,1]) and then comparing that value to

the patient’s survival probabilities S(xf) The first date where the survival probability was

3Division is coded based on patient home state based on U.S. Census Bureau Schema. See https://wwwz2.census.gov/geo/pdfs/maps-
data/maps/reference/us_regdiv.pdf
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less than or equal to the drawn random value, was assigned as the imputed date of death:
t* 5 S(t}xB) < u (Lipkovich 2016).

Since duplicating the level of death reporting to within the follow-up period was sought,

if the random value was less that the survival probability for the last day of the follow-up
period, then the patient was modeled as having survived through the follow-up period and
assigned a date of censoring. Those assigned a date of death were imputed as died, and those
assigned a date of censoring were imputed as alive. Note then that a completely different

set of synthesized data can be generated by using a different sequence, initiated by using a
different seed to the pseudo-random number generator, of random values to be compared to
survival probabilities.

Exhibit 1 demonstrates the imputation of date of death or date of censoring. It shows a plot
of one patient’s model-estimated survival probabilities (computed from Eq. 2, from date
of discharge to end of follow-up) compared to a uniform random variable value (for this
example, we use RV=0.6732); note that in an actual synthetization run, a distinct random
variable value is generated independently for each patient.

To estimate the date of death or date of censoring, one would move across the plot at a level
equal to RV, until reaching the survival probability plot (actually, the first day with survival
probability just under the RV). There is a specific date associated with this RV (for this
example, January 23, 2017) and this is the value used in the imputation. If the RV selected is
less than the survival probability on December 31, 2017 (the end of the follow-up period) the
patient is not assigned a death status (they are imputed to have survived follow-up).

2.2.2 Step 2. Modeling the contributing and underlying causes of death—
Synthetization of cause of death is contingent upon synthetization of occurrence of death
(i.e. a synthetic cause of death code is generated only for patients assigned a synthetic
mortality status of assumed deceased). There are two sets of information about cause of
death to be synthesized:

1. The presence of diabetes or hypertension, as contributing causes of death (similar
to the two multiple causes of death available on the NHANES and NHIS
partially synthetic public use linked mortality files (https://www.cdc.gov/nchs/
data-linkage/mortality-public.htm))

2. The underlying cause of death was limited to include only the top nine leading
underlying causes of death (similar to the NHIS and NHANES public use
linked mortality files) based on the National Vital Statistics System 2017 annual
report (https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsré8_06-508.pdf). The top
nine causes of death included diseases of the heart, malignant neoplasms
(cancer), accidents (unintentional injuries), chronic lower respiratory diseases,
cerebrovascular diseases, Alzheimer disease, diabetes mellitus, influenza and
pneumonia, and deaths due to nepbhritis, nephrotic syndrome and nephrosis. All
other underlying causes of death were grouped together and placed in a residual
category. The modeling for underlying cause of death was dependent on whether
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synthesized diabetes, hypertension, both, or neither as contributing causes of the
death were present.

The model for underlying cause of death is contingent on the contributing cause of death,
thus the model for underlying cause of death is nested within that for contributing cause of
death, and both of these are nested within the model for occurrence and date of death.

Each of these sets is synthesized using a classification tree model (Breiman 1984) and the
factors tested for the model are generally similar to those used in the survival analysis. This
approach is expected to result in a joint distribution that will align with the patterns that are
present in the underlying data.

To build the classification trees, SAS’s HPSPLIT was used (SAS HPSLIT). The data used to
build the classification tree are the actual set of NHCS records linked to NDI records (i.e.,
the records for patients shown to have died based on record linkage procedures).

To assign the multiple or contributing causes of death, there were four possible statuses to be
selected from:

. Neither diabetes nor hypertension is a contributing cause of death
. Diabetes but not hypertension is a contributing cause of death

. Hypertension but not diabetes is a contributing cause of death

. Both diabetes and hypertension are contributing causes of death

The variables used for classification are:

) Days of inpatient care . Char_lson Comorbidity Index groups (among 17
: Number of emergency department possible)
VeI . Charlson Index Value Summary (range 0-6)
) Age attime of discharge . Census division of residence
. e . Length of interval (days) from discharge to
. Imputed race and ethnicity death

and they were defined identically to those used in the original survival model.

The developed classification tree schema places each patient in a leaf based on the

above characteristics using logic that is developed to minimize the entropy of resulting
classifications. For each leaf, there is an associated probability of each of the four
contributing cause statuses, which sum to one. By partitioning the interval from zero to one
into segments having lengths equal to their corresponding probabilities, a pseudo random
value drawn from uniform distribution specifies the assigned contributing cause status.

Once the contributing cause status has been synthesized, it is used along with the other
predictive variables listed above to model the underlying cause of death from among these
ten exclusive categories:
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. Malignant neoplasms (cancer) . Diabetes mellitus

. Diseases of the heart . Alzheimer disease

. Accidents (unintentional injuries) . Influenza and pneumonia

. Chronic lower respiratory diseases . Nepbhritis, nephrotic syndrome, and nephrosis
. Cerebrovascular diseases . All other

The classification variables for this sub-model are identical to those used in the contributing
causes of death sub-model except for the addition of the synthesized value for contributing
cause of death. The assignment of the underlying cause of death is performed in a parallel
manner to the major causes. It should be noted that because each of the assignments is
dependent on a drawn random variable a different sequence of drawn random variables will
produce different synthesized causes of death for the same patients.

2.2.3 Step 3. Assessing the estimates from the actual and synthesized data
—Since the synthesized data would probably most frequently be used is in survival analysis,
the statistical utility of the synthetic data is evaluated by comparing the similarity of survival
parameter estimates between the synthetic data and the actual data. Survival analysis, using
SAS’s PHREG, was conducted (SAS PHREG). The variables in this model (there are a total
of 69 and these are listed in the Appendix) were defined identically to those used in the
original survival model except that age was binned in five-year increments.

For the synthetic data, the at-risk period for each patient is the number of days from the last
hospital discharge (either from IP or ED setting) until synthesized death or the end of the
follow-up period. To assess the results of the synthetic data versus the actual, the methods
below were used:

. Histograms of the ratios of the parameter estimates of the two approaches with a
peak occurring at a ratio of 1, indicating similarity.

. Scatter plots of actual versus synthetic parameter estimates: with conformity to
the y = x (45° line), indicating similarity.

. Regression analysis of synthetic parameter estimates to actual parameter
estimates: with estimated R-Square and B nearness to 1, indicating similarity.

. Cross tabulations of actual versus synthetic parameter statistical significance
evaluated at alpha=0.01: a higher percent agreement indicates greater similarity.
Cohen’s Kappa statistic was used to measure agreement of the statistically
significant parameters from the synthetic and actual data. Kappa statistics were
generated for those at alpha=0.01. The standard range of the Kappa statistic is
0 for no agreement and 1 for complete agreement, albeit values from -1 to 0
are possible and would indicate negative correlation. Landis and Koch (Landis
1977) suggest the following interpretation for the Kappa statistic: < 0.00: Poor;
0.00-0.20: Slight; 0.21-0.40: Fair; 0.41-0.60: Moderate; 0.61-0.80: Substantial;
0.81-1.00: Almost Perfect. The Kappa statistic was used as a way to account for
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agreement by chance. Note, for example, that if 80% of both actual and synthetic
parameter estimates are significant, but this status is randomly assigned, then just
by chance, 68% of statuses would agree. Thus, high levels of percent agreement
may be less confirmatory of general concordance than might be expected, and
Kappa is a way to get a better assessment than the raw agreement rate.

For all of these analyses, the results are presented as unweighted estimates. At this time the
NHCS cannot be used to make nationally representative estimates due to the low response
rate.

3. Results

An initial assessment looked at the distributions of all-cause mortality and cause specific
mortality of the actual data and the synthetic data. The results from this assessment were
similar (Table 2). Exhibit 2 shows the distribution of the ratio of the survival parameter
estimates for the synthetic data to the survival parameter estimates for the actual data. There
is a high peak right around the value 1 (69.1% are £5% of this)), and for most of the
estimates the ratio is between 0.8 and 1.2 (about + or — 20%, where a value of 1 indicates
that the parameter estimated from the actual survey data exactly equals the value of the
parameter estimated from the synthetic data).

Exhibit 3 shows the plot of these estimates (Synthetic vs. Actual). The plotted points fall
very close to the 45° line suggesting similarity between the two sets of values.

Similarly, proportional hazard regressions (both using actual death data and synthesized
death data) for each of the nine specific causes of death were conducted. For each of the
nine causes of death a survival analysis was conducted that considered death by cause as the
event and the at-risk period as time from discharge to death or to the end of the follow-up
period, whichever came first. Patients dying of other causes were included in the model with
the at-risk period running from date of discharge to the date of death (synthetic or actual),
but not considered as having a death outcome. They were censored at their time of death.
Exhibits 4 and 5 shows plots for cancer and heart disease.

When comparing the resulting parameter estimates displayed in Exhibit 4 and 5, it is seen
they follow less on the 45° line than in the analysis for all causes of death but still generally
approach it.

However, there is a strong relationship between the actual and synthetically derived
parameter estimates as can be demonstrated by conducting linear regression between

them. Here the response variable is the parameter estimates for underlying cause of death
generated from the proportional hazard model using the actual data and the predictor is

the parameter estimates for underlying cause of death generated for the same predictor

from the proportional hazard model using the synthetic data. In the appendix table, this
would be the regression of Estimate (Syn.) (3" column) on Estimate (27 column). Thus, as
R-square approaches 1, the estimated parameter value from actual data correlates with the
estimated parameter value from the synthetic data (i.e., the line connecting them is straight).
In addition, a p of 1 indicates that the degree of change in the actual parameter estimates is
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of the same scale the degree of change in the synthetic data parameter estimates (i.e., the fit
line is on 45°). Table 3 summarizes the results of these regressions.

The R-square values presented in Table 3 are generally close to 1, all are above 0.90 except
for Alzheimer disease, diabetes melliltus, and influenza and pneumonia. Also, the slope of

regression line is generally close to 1 except for Alzheimer disease, diabetes melliltus, and

influenza and pneumonia.

For an analyst who is using synthetic data to evaluate relationships between various factors
and survival rates, it may be of interest whether specific relationships are shown to be
significant rather than the precise size of estimates. Ideally, factors which are statistically
significant, using actual linked data, would remain statistically significant when using the
synthesized data, and any factor not statistically significant using actual linked data would
remain so when using the synthesized data. To evaluate this, a cross-classification, actual
to synthetic, of statistical significance status for survival analysis parameter estimates was
assessed. For example, if of the 69 estimated parameter estimates (this is the sum of the
levels in each categorical variable less one for the reference level, and they are listed in

the Appendix) in the chronic lower respiratory disease cause-of-death survival analysis, 58
agreed (actual vs. synthetic) on the statistical significance status at the alpha=0.01 level,
the percent agreement would be 58/69=84.1%, with a Kappa of 0.67, indicating moderate
agreement.

Table 4 shows the concordance of statistically significant survival parameter estimates
between the actual and synthetic data. The percent agreement for all-cause mortality is
97.1% and for cause specific mortality the percent agreement is generally between 70 and
85%. The Kappa statistic, assessing the agreement of the number of statistically significant
parameters, for all-cause mortality is 0.84, suggest almost perfect agreement, while for cause
specific mortality the Kappa statistic ranges from 0.27 to 0.67, suggesting slight to moderate
agreement. Thus for a researcher using the synthetic data to determine which variables are
statistically significant predictors of survival for specific causes of death with the actual data
they would usually, but not always, get a correct indication of statistical significance. Still,
to confirm the results using the synthetic data researchers would need to gain access to the
actual restricted-use linked NHCS-NDI data files.

4. Conclusion

A new methodology was employed to create synthetic data for the NHCS linked mortality
data. The occurrence of death was synthesized using a proportional hazard model that
incorporated demographics and health status information collected from patient encounter
records. Classification trees to assign underlying and selected multiple or contributing
causes of death for modeled deaths were used.

The analysis shows that the synthetic data yield similar parameter estimates for occurrence
and time until death such that this approach to creating publicly available synthetic data
could be a reliable substitute for access to the restricted-use linked NHCS-NDI data. With
regard to the causes of death, the comparison of regression parameters shows fairly high
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R-square estimates for most causes of death, with some level of non-alignment (e.g.,
Alzheimer’s disease, diabetes mellitus, and influenza and pneumonia). This approach to
creating synthetic data would allow data users to form preliminary analyses of condition-
specific death rates; however, subsequent access to the actual data may in some cases yield
different conclusions about the statistical significance of factors relating to that survival
experience. By limiting underlying cause categories to those which present the most similar
results to the actual data, it would be possible to minimize the instances where the estimates
made from synthetic data differ significantly from the estimates made from the actual data.
Should NCHS decide to proceed with the production of NHCS-NDI synthetic linked data
set based on the data generation models presented in this paper, the next steps would

entail conducting appropriate disclosure protections analyses to determine whether the
synthetic data generated by these processes provide acceptable levels of privacy protection.
In addition, it may be worth considering creating multiple replicates for the synthetic data to
assess the uncertainty of the statistical models.

The most substantial limitation to the analysis presented in this paper, of which we are
aware, is that the survival models used to evaluate the synthetic data are very similar in
structure to the models used to develop the synthetic data, particularly with regard to the
predictors used in them. Thus, this analysis does not demonstrate that unmodelled variables
will be synthesized in a way that generate results that would be obtained with actual data and
users of the synthetic data must be made aware of this limitation. Another limitation of this
study is lack of an explanation of why certain causes of death can be modeled with synthetic
data more similarly to actual data than others. Additionally, it would be beneficial to data
users if they were provided a means to establish a confidence interval for actual parameter
estimates based on results obtained from synthetic data.

Still, the methods presented in this paper suggest strategies that could be used effectively
when linked or even non-linked data needs to be protected from disclosure. In particular
it presents a viable strategy for incorporating survival models into a synthetic database
generation model. It also shows how synthetic data can be evaluated using parameter
estimates from explanatory data.
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Appendix

NHCS 2016 Survival Estimates Comparison of Actual to Synthetic Data Comparison for All
Deaths

Estimate StdErr ProbchiSq

#  Variable Estimate (Synth.)  StdErr (Synth.)  ProbChiSq (Synth.)

Age Group (rounded to nearest five-year, reference category: 70 years old)
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Estimate StdErr ProbchiSq
#  Variable Estimate (Synth.)  StdErr (Synth.)  ProbChiSq (Synth.)
1 0 -3.37 -334  0.036 0.035 <.0001 <.0001
2 5 -412 -407  0.059 0.057 <.0001 <.0001
3 10 -3.97 -395  0.063 0.062 <.0001 <0001
4 15 -3.47 -341  0.048 0.047 <.0001 <.0001
5 20 -2.75 —278 0032 0.032 <.0001 <.0001
6 25 -2.34 -233 0025 0.025 <.0001 <0001
730 -213 215 0.023 0.023 <.0001 <.0001
8 35 -1.79 -180  0.021 0.021 <.0001 <.0001
9 40 -1.48 -150  0.019 0.019 <.0001 <0001
10 45 -1.19 -116 0017 0.016 <.0001 <.0001
11 50 -0.90 -087 0014 0.014 <.0001 <.0001
12 55 -0.62 -062 0012 0.012 <.0001 <0001
13 60 -0.38 -039 0011 0.011 <.0001 <.0001
14 65 -0.21 -022 0011 0.011 <.0001 <.0001
15 75 021 021 0.010 0.010 <.0001 <0001
16 80 0.48 047  0.010 0.010 <.0001 <.0001
17 85 0.79 078  0.010 0.010 <.0001 <.0001
18 90 112 111 0011 0.011 <.0001 <0001
19 95 152 150 0012 0.013 <.0001 <.0001
20  Age missing 0.26 0.15 0.041 0.043 <.0001 0.0004

Conditions not present (reference category: condition not present)
21 Myocardial Infarction 0.03 0.03 0.016 0.016 0.0804 0.0309
22 CDJﬁquﬁiZZVJET“‘ -0.31 -033 0023 0.023 <.0001 <.0001
23 gﬁbﬁﬁgmﬁg -0.03 ~006  0.036 0.037 0.3462 0.1008
24 Ef%‘;:ﬁg;aa”d 0.33 031 0021 0.022 <.0001 <.0001
25  Renal Disease 0.06 006 0014 0.015 <.0001 <.0001
26 Cancer 0.56 054 0015 0.016 <.0001 <.0001
27 Moderate or Severe 0.59 058  0.076 0.076 <0001 <0001
28  Metastatic Carcinoma 1.30 1.30 0.029 0.031 <.0001 <.0001
29 AIDS/HIV -0.08 -012  0.045 0.047 0.0598 0.0081
30 g;’l‘gf;“"e Heart 0.39 038  0.009 0.010 <0001 <0001
a1 Peripheral Vascular 0.5 -015 0016 0.016 <0001 <.0001
32 giesrggsrg"ascu'a’ -0.05 -006 0012 0.012 0.0001 <.0001
33 Dementia 050 048  0.010 0.011 <.0001 <.0001
a4 Goronic Pulmonary 0.03 003  0.009 0.009 0.0002 0.0013
Connective Tissue

35  Disease-Rheumatic -0.05 -003  0.020 0.020 0.0203 0.1004

Disease
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Estimate StdErr ProbchiSq
#  Variable Estimate (Synth.)  StdErr (Synth.)  ProbChiSq (Synth.)
36 Peptic Ulcer Disease -0.06 -0.03 0.025 0.025 0.0189 0.2764
37  Mild Liver Disease 0.82 0.82 0.016 0.017 <.0001 <.0001
Charlson Index Summary (reference category: 1)
38 0 -0.64 -0.65 0.010 0.010 <.0001 <.0001
39 2 0.38 0.37 0.011 0.011 <.0001 <.0001
40 3 0.59 0.58 0.016 0.017 <.0001 <.0001
41 4 0.78 0.77 0.022 0.024 <.0001 <.0001
42 5 0.85 0.84 0.030 0.032 <.0001 <.0001
43 6 0.62 0.59 0.040 0.043 <.0001 <.0001
Imputed Race/Ethnicity (reference category: White)
44 Asian -0.21 -0.20 0.017 0.017 <.0001 <.0001
45  Black -0.04 -0.04 0.007 0.007 <.0001 <.0001
46  Hispanic -0.24 -0.23 0.009 0.009 <.0001 <.0001
47 Amer. Ind 0.06 0.14 0.070 0.070 0.3613 0.0505
Sex: Female
48  (reference category: -0.27 -0.26 0.005 0.005 <.0001 <.0001
Male)
Division (reference category: Mid-Atlantic)
49  Northeast -0.05 -0.03 0.018 0.018 0.0128 0.1139
50 East North Central 0.12 0.12 0.009 0.009 <.0001 <.0001
51  West North Central 0.10 0.10 0.013 0.013 <.0001 <.0001
52  South Atlantic 0.21 0.22 0.009 0.009 <.0001 <.0001
53  East South Central 0.17 0.19 0.011 0.011 <.0001 <.0001
54  West South Central 0.89 0.90 0.012 0.012 <.0001 <.0001
55 Mountain 0.18 0.19 0.013 0.013 <.0001 <.0001
56 Pacific 0.40 0.41 0.010 0.010 <.0001 <.0001
Hospital Bed Size (reference category: > 500)
57 0-25 -0.37 -0.38 0.038 0.038 <.0001 <.0001
58 26-100 -0.19 -0.19 0.017 0.017 <.0001 <.0001
59 101-500 -0.08 -0.09 0.006 0.006 <.0001 <.0001
Hospital Ownership (reference category: Non-profit)
60  For Profit —-0.55 -0.54 0.019 0.019 <.0001 <.0001
61  Government -0.03 -0.03 0.009 0.009 0.0005 0.0043
Hospital Type (reference category: General Acute)
62  Children’s -0.14 -0.16 0.046 0.045 0.0027 0.0004
63  Psychiatric 0.37 0.35 0.024 0.024 <.0001 <.0001
64 o et 0.17 020  0.026 0.027 <0001 <0001
Hospital Urban Rural Classification (reference category: Large Central Metropolitan)
65 kﬂae’?r%g:ﬂgﬁ -0.10 -009  0.008 0.008 <0001 <0001
66 Medium Metropolitan -0.05 -0.05 0.007 0.007 <.0001 <.0001
67  Small Metropolitan 0.25 0.22 0.011 0.011 <.0001 <.0001
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Estimate StdErr ProbchiSq
#  Variable Estimate (Synth.)  StdErr (Synth.)  ProbChiSq (Synth.)
68  Micropolitan 0.19 0.20 0.013 0.013 <.0001 <.0001
69 Non-Core 0.10 0.12 0.045 0.045 0.0218 0.0078
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Exhibit 1.
Imputation of Date-of-Death from Estimated Survival Probability
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Histograms of the Ratio of Synthetic Survival Analysis Parameter Estimates to Actual

Estimates for All Causes of Death
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Exhibit 3.
Plot of Synthetic to Actual Survival Parameter Estimates for All Causes of Death
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Exhibit 4.
Plot of Synthetic to Actual Survival Parameter Estimates for Cancer Mortality
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Exhibit 5.
Plot of Synthetic to Actual Survival Parameter Estimates for Heart Disease Mortality
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Table 1.

Charlson Index, Conditions and Weights
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Condition

Weight

Acute myocardial infarction
Congestive heart failure
Peripheral vascular disease
Cerebrovascular accident
Dementia

Pulmonary disease
Connective tissue disorder
Peptic ulcer

(Non-Severe) Liver disease
Diabetes

Diabetes complications
Paraplegia

Renal disease

Cancer

Metastatic cancer

Severe liver disease

HIV
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Page 21

Distribution of Underlying Cause of Death from the Synthetic and Actual Linked 2016 NHCS-2016/2017 NDI

Data
Underlying cause of death& Synthetic % - Actual %
Malignant neoplasms (cancer) 27.4 26.7
Diseases of the heart 12.6 12.7
Accidents (unintentional injuries) 5.4 5.7
Chronic lower respiratory diseases 5.2 5.4
Cerebrovascular diseases 4.9 4.6
Diabetes mellitus 3.0 3.0
Alzheimer disease 2.8 2.7
Influenza and pneumonia 24 2.3
Nepbhritis, nephrotic syndrome and nephrosis 17 1.7

Underlying cause of death codes are based upon International Statistical Classification of Diseases, Injuries and Causes of Death, Tenth Revision,

recode into 113 selected causes.

Source: NCHS, 2016 NHCS linked 2016/2017 NDI file
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R-Square and Beta Estimates from OLS Model: Paramact(Predictor) = a + - ParamgynTH(Predictor) + e

(n=69)
Cause of Death R-Square B Standard error of B
Malignant neoplasms (cancer) 098 0.94 0.02
Diseases of the heart 094 115 0.04
Accidents (unintentional injuries) 0.92 0.93 0.03
Chronic lower respiratory diseases 0.97 1.06 0.02
Cerebrovascular diseases 0.97 1.00 0.02
Diabetes mellitus 072 131 0.10
Alzheimer disease 0.58 1.44 0.15
Influenza and pneumonia 0.75 0.64 0.05
Nephritis, nephrotic syndrome and nephrosis 098 1.00 0.02
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Percent Agreement and Concordance Actual vs. Synthetic for the Number of Statistically Significant Survival

Parameter Estimates

Cause of Death Percent agreementata =0.01 Kappa Interpretation of Kappa4
All-cause mortality 97.1% 0.84 Almost perfect
Malignant neoplasms (cancer) 78.3% 0.27 slight
Diseases of the heart 73.9% 0.32 slight
Accidents (Unintentional injuries) 72.5% 0.45 fair
Chronic lower respiratory diseases 84.1% 0.67 moderate
Cerebrovascular diseases 78.3% 0.54 fair
Diabetes mellitus 68.1% 0.34 slight
Alzheimer disease 73.9% 0.45 fair
Influenza and pneumonia 76.8% 0.54 fair
Nephritis, nephrotic syndrome and nephrosis 76.8% 0.53 fair
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