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Abstract

The discovery of novel viruses in animals expands our knowledge of viral diversity and potentially emerging zoonoses. High-
throughput sequencing (HTS) technology gives millions or even billions of sequence reads per run, allowing a
comprehensive survey of the genetic content within a sample without prior nucleic acid amplification. In this study, we
screened 156 rectal swab samples from apparently healthy bats (n = 96), pigs (n = 9), cattles (n = 9), stray dogs (n = 11), stray
cats (n = 11) and monkeys (n = 20) using a HTS metagenomics approach. The complete genome of a novel papillomavirus
(PV), Miniopterus schreibersii papillomavirus type 1 (MscPV1), with L1 of 60% nucleotide identity to Canine papillomavirus
(CPV6), was identified in a specimen from a Common Bent-wing Bat (M. schreibersii). It is about 7.5kb in length, with a G+C
content of 45.8% and a genomic organization similar to that of other PVs. Despite the higher nucleotide identity between
the genomes of MscPV1 and CPV6, maximum-likelihood phylogenetic analysis of the L1 gene sequence showed that
MscPV1 and Erethizon dorsatum papillomavirus (EdPV1) are most closely related. Estimated divergence time of MscPV1 from
the EdPV1/MscPV1 common ancestor was approximately 60.2–91.9 millions of years ago, inferred under strict clocks using
the L1 and E1 genes. The estimates were limited by the lack of reliable calibration points from co-divergence because of
possible host shifts. As the nucleotide sequence of this virus only showed limited similarity with that of related animal PVs,
the conventional approach of PCR using consensus primers would be unlikely to have detected the novel virus in the
sample. Unlike the first bat papillomavirus RaPV1, MscPV1 was found in an asymptomatic bat with no apparent mucosal or
skin lesions whereas RaPV1 was detected in the basosquamous carcinoma of a fruit bat Rousettus aegyptiacus. We propose
MscPV1 as the first member of the novel Dyolambda-papillomavirus genus.
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Introduction

More than 70% of the emerging infectious disease agents are

caused by microbes jumping from animals into human. This has

been well exemplified by the highly fatal human infection due to

avian influenza A H5N1 in 1997 [1]. The outbreak of severe acute

respiratory syndrome (SARS) caused by a novel coronavirus in

2003 [2], confirmed again that microbes can jump species from

animals to humans with unpredictable consequence. The human

SARS coronavirus was traced to caged civets in the market [3],

and later Chinese horseshoe bat, Rhinolophus sinicus, was suggested

to be a likely reservoir of SARS coronavirus [4]. Bats are ideal

incubators for new emerging infectious agents as they are

mammals which roosted together and can fly over vast geograph-

ical distance [5]. This has reignited the interest in seeking for new

bat viruses including many bat coronaviruses and the recent

discovery of bat influenza virus [6]. Besides the SARS coronavirus,

viruses in bats often infect human through intermediate hosts such

as horses for Hendra virus, pigs for Nipah virus, and chimpanzees

for Ebola virus [5]. It is therefore important to catalogue as

comprehensively as possible the animal viruses present in wild life

especially the bats and birds, the food animals such as pigs and

cattles, the pet animals such as cats and dogs, and monkeys which

are phylogenetically close to humans. Using consensus primer

polymerase chain reaction (PCR) screening, we have been able to

discover relatively closely related species of virus in many different

animals [4,7–23]. However more distant or novel families of virus

can only be found by metagnenomics using deep sequencing with

the newer generation sequencers [24,25]. We report in this paper

the discovery and characterization of a novel bat papillomavirus

(PV) from rectal swab samples randomly collected from asymp-

tomatic wild, food and pet animals using a metagenomic

approach.
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Materials and Methods

Sample collection
This study was performed in strict accordance with local

ordinance and the recommendations by the Committee on the

Use of Live Animals in Teaching and Research (CULATR) at the

University of Hong Kong. The sampling of live animals were

approved under permit no. 1048-05 (bats and monkeys) and 2284-

10 (stray dogs and cats). All sampling were performed by licensed

veterinarians, and anesthesia was given where appropriate; every

effort was made to minimize suffering.

Sample collection was carried out in 2006–2007, and was

approved by and performed in collaboration with the Department

of Agriculture, Fisheries and Conservation (AFCD) of the Hong

Kong Special Administrative Region (HKSAR). Collection of

animal samples was performed by authorized staff members from

AFCD of the HKSAR Government under the supervision of

licensed veterinarian from AFCD, HKSAR (http://www.afcd.gov.

hk/english/quarantine/qua_awc/qua_awc_leg/qua_awc_leg_

dogs/qua_awc_leg_dogs.html).

A total of 96 rectal swabs were collected into viral transport

medium from 10 types of bats including Rhinolophus sinicus (n = 10),

Rhinolophus affinus (n = 10), Hipposideros pomona (n = 16), Miniopterus

pusillus (n = 10), Miniopterus schreibersii (n = 10), Pipistrellus abramus

(n = 10), Pipstrellus spp (n = 9), Myotis ricketti (n = 8), Myotis chinensis

(n = 8), and Nyctalus noctula (n = 5). These bats were captured and

sampled at 20 different locations in rural areas of the HKSAR,

including water tunnels, abandoned mines, sea caves, and forested

areas during a 1-year period. Bats were caught by nets during

routine conservation procedures by AFCD, HKSAR. Collection

of specimens was performed by an authorized veterinarian at the

AFCD. Rectal swabs were collected from bats with medium-

moistened cotton swab immediately immersed in viral transport

medium. These bats were released after sample collection. The

samples were collected for a routine surveillance study by AFCD.

The rectal swabs of 9 pigs and 9 cattles were collected and put

into viral transport medium in a slaughter house in the New

Territories, Hong Kong (Sheung Shui Slaughterhouse), a facility

owned and operated by the HKSAR Government. The AFCD is a

government department legitimately allowed to perform their

duties in collaboration with other departments. The pigs and cattle

had been previously slaughtered at the slaughterhouse. Samples

from the carcasses were collected for a surveillance study by

AFCD staff with departmental authorization.

Rectal swabs of 11 stray dogs, 11 stray cats and 20 monkeys

were collected under anaesthesia. The least traumatic techniques

were employed for the collection of samples. To minimize

sufferings and injury, anaesthesia for restraining were carried out

when necessary. The strays dogs and strays cats were kept at

AFCD under standard facilities. The stray dogs and cats were

euthanized after samplings, as part of the routine procedure of the

AFCD. Wild monkeys were caught, temporarily kept in cages for

less than one day, sampled and released, also as part of the routine

procedure of the AFCD. A licensed AFCD veterinarian was

responsible for assessing the well-being of animals for few hours

and ensured that they are clinically normal before it was released

back to nature. Procedures requiring institutional approval were

approved by the Committee on the Use of Live Animals in

Teaching and Research (CULATR) at the University of Hong

Kong, permit numbers 1048-05 and 2284-10.

Sample preparation
The viral transport medium (in which the rectal swab specimens

were immersed) were pooled, 100 ml each, and centrifuged at

100006g for 5 min. The supernatant was then filtered through a

0.22 mm filter (Millipore). The filtrates were treated with DNaseI

(Roche) and RNaseA (QIAGEN) to remove any extracellular

nucleic acids that remained. Total RNA and DNA from the

samples were extracted using the QIAamp Viral RNA Mini Kit

(QIAGEN) and QIAamp DNA Mini Kit (QIAGEN), respectively.

For the total RNA sample obtained, reverse transcription was

performed using SuperScript III reverse transcriptase (Invitrogen)

and random hexamers (Invitrogen) following the manufacturer’s

protocol. The cDNA and the previously extracted DNA were

separately amplified using the Rapisome pWGA kit (Biohelix).

454 sequencing
The amplified DNA was used as a template for GS FLX

analysis (Roche/454 Life Sciences) on one-quarter of a PicoTi-

terPlate according to manufacturer’s instruction manual. The

purified DNA level was determined by Nanodrop (Thermo

Scientific). A total of 120 mg of DNA from the library was run

on a 2% agarose gel, yielding a DNA smear. DNA ranging in size

from 500 to 1,000 bp was cut from the gel and purified using the

QIAquick Gel Extraction Kit (Qiagen). The extremities of the

DNA fragments were then polished using T4 polynucleotide

kinase. The Roche/454 adaptors were then ligated, and small

DNA fragments removed and loaded on the machine according to

the manufacturer’s protocol (GS FLX Titanium General Library

Preparation Kit, Roche).

Analysis of sequence reads
Sequences were trimmed based on quality score of 99.9% and

any sequences less than 30 bp long were deleted. Duplicate

sequences were discarded using 454 duplicate clustering workflows

(sequence identity threshold of 0.96) based on the CDHIT

program [26]. Remaining sequences were compared to a database

containing 3,959 complete eukaryotic viral genomes (http://www.

ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html) and the non-

redundant protein sequences (nr) database from NCBI (http://

www.ncbi.nlm.nih.gov) using tBLASTx and BLASTx, respective-

ly, with an E-value cutoff of 1025 [27]. BLAST results were parsed

to save the best hits for each sequence. The best-hit sequences

were individually annotated to note the sources of the matching

sequences (eukaryotic virus, phage, bacteria and eukaryotes).

Sequences were also analyzed using a metagenomic annotation

tool, MEGAN version 4.50.6 to assign each sequence into different

taxa present in the metagenomic sequences using the NCBI

taxonomic database [28]. All unmapped reads were de novo

assembled separately using MIRA to identify previously undetect-

ed virus [29].

De novo metagenomic assembly
De novo assembly of the metagenome was performed using

MIRA to confirm isolation of viral genomes using an assembly

option with minimum read length of 80 and base default quality of

10 [29]. There were 1,283 contigs ranging in size from 91 to 3,722

bp for human samples, and 1,960 contigs from 116 to 11,170 bp

for animal samples. Contigs were compared to the database

containing 3,959 complete eukaryotic viral genomes and the nr

database from NCBI using tBLASTx and BLASTx, respectively,

with an E-value cutoff of 1025 to assign taxonomy.

Confirmation of the presence and completion of the
assembled genome in the original specimen

After the incomplete genome of this novel virus was assembled

from the metagenomic dataset, specific primers were designed to

Metagenomics for a Novel Papillomavirus Discovery
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fill the gaps for the completion of this viral genome (primers

available on request). For the confirmation of the host specimen

containing this novel virus, DNA of each original specimen was

subjected to PCR by using the primers specific for the L1 gene

amplifying a 444 bp fragment between positions 483 to 926

(forward primer LPW11859 59-GGCTCTCGGTGAGCACT-39

and reverse primer LPW11861 59-CAGTAAGGTCTGTTGAA-

CAGTT-39). The PCR mixture consisted of DNA template, PCR

Buffer II at 16 (Applied Biosystems), 2 mM MgCl2, 200 mM of

each dNTPs and 0.625 U AmpliTaq Gold DNA polymerase

(Applied Biosystems). The mixtures were amplified in thermal

cycler 9700 (Applied Biosystems), with a hot start of 95uC for

5 min, followed by 40 cycles of 95uC for 1 min, 55uC for 1 min

and 72uC for 1 min and a final extension at 72uC for 10 min.

PCR product was gel-purified using the QIAquick gel extraction

kit (Qiagen). Both strands of the PCR products were sequenced

with an ABI Prism 3700xl Genetic Analyser (Applied Biosystems)

by using the PCR primers.

Distance measurements and phylogenetic analysis
The nucleotide global multiple sequence alignments were

constructed for different open reading frames (ORFs) with 214

PVs based on the corresponding amino acid alignment using

MUSCLE v3.7 [30] implemented in Seaview v4.1 as described

previously [31,32]. The pairwise identity values from nucleotides

and proteins were calculated using MEGA5 [33]. Only the PV

core early (E) ORFs E1 and E2 and the late (L) ORFs L1 and L2

were included as only these ORFs are ubiquitous present in all

characterized PVs. L1 nucleotide sequences of MscPV1 and 78

PVs with complete genomes, representing all presently classified

genera, were used for phylogenetic analysis. Maximum likelihood

trees were constructed using PhyML with GTR+I+G model [34].

Modelgenerator was used to obtain the model for the likelihood

analysis [35].

Figure 1. MEGAN tree with taxonomic assignments. The distribution of the sequence reads through blastx analysis against the nr database.
Size of circles located next to taxa are proportional to the total number of reads identified. Not assigned contains those reads that are not assigned by
the least common ancestor algorithm. No hits contains those reads that did not return any significant alignments to the nr database.
doi:10.1371/journal.pone.0043986.g001

Metagenomics for a Novel Papillomavirus Discovery

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e43986



Genome analysis
Putative ORFs were predicted using ORF Finder and then

searched for similarities with other proteins using BLASTP.

Theoretical isoelectric points and molecular masses were estimated

using Compute pI/Mw (http://web.expasy.org/compute_pi/).

Proteins were analyzed for unique domains with InterProScan

[36].

Prevalence of MscPV1 in bats
Prevalence of MscPV1 in M. schreibersii was further investigated

by PCR screening of 419 additional samples (mouth swabs

[n = 210], rectal swab [n = 127], anal swabs [n = 2], and urine

samples [n = 80]) obtained from 257 bats using primers specific for

the L1 gene amplifying a 444 bp fragment between positions 483

to 926 (forward primer LPW11859 59-GGCTCTCGGTGAG-

CACT-39 and reverse primer LPW11861 59-CAG-

TAAGGTCTGTTGAACAGTT-39).

Figure 2. Circular and linear genome maps of Miniopterus schreibersii papillomavirus type 1 (MscPV1). Characteristic features of the long
control region of MscPV1, showing genomic locations of E2 binding sites (bold), polyadenylation sites (underlined), and TATA box (boxed).
doi:10.1371/journal.pone.0043986.g002
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Nucleotide sequence accession number
The nucleotide sequence of the genome of MscPV1 has been

lodged within the GenBank sequence database under accession

no. JQ692938.

Results

Identification of a novel papillomavirus
Approximately 3% of the sequence reads generated from these

animal samples were assigned to eukaryotic viral sequences by the

BLAST nr protein database. The majority of the viral-like

sequences were similar to single-stranded, negative-sense, circular

DNA viruses, with the largest proportion of the sequences showing

homology to porcine circovirus. The next large group of the

sequences matched to another member of the Circoviridae family,

torque teno virus, including torque teno felis virus, torque teno sus

virus 1 and torque teno canis virus. The remaining viral-like

sequences shared homology to canary circovirus, anellovirus and

densovirus in which densovirus is a linear single-stranded DNA

virus. In addition, many sequences were categorized as phage-

related genes (Fig. 1). The majority of these sequences were related

to porcine circovirus in animal samples. Twenty two sequence

reads and one contig in animal sample were related to PVs with

amino acid identity ranged from 42% to 73%. These hits cover

about 70% of the viral genome, which we named Miniopterus

schreibersii papillomavirus type 1 (MscPV1), since the sample was

isolated from a Common Bent-wing Bat (M. schreibersii). This bat is

a female adult bat collected on 29 December 2006 in Tung Tsz,

Hong Kong. By connecting gaps between sequenced viral

fragments based on PV sequences, the complete genome of the

novel PV was acquired.

Characterization of MscPV1 complete genome
The complete genome of MscPV1 was 7,531 bp in length with a

G+C content of 45.8%. The MscPV1 genome contains the typical

PV ORFs, coding for five putative early proteins (E6, E7, E1, E2,

E4), and two putative late capsid proteins (L2 and L1) (Fig. 2 and

Table 1).

The MscPV1 E6 contains two conserved zinc binding domains

(CXXCX29CXXC), separated by 36 amino acids, whereas the

MscPV1 E7 contained one slightly modified domain

(CXXCX30CXXC), but no retinoblastoma tumour suppressor

(pRB)-binding domain (LXCXE) [37]. The E1 ORF codes for the

largest MscPV1 protein (669 aa), and contains the conserved ATP-

binding site of the ATP-dependent helicase (GXXXXGK(T/S))

[38]. This sequence is GPPDTGKS in MscPV1. The E2 protein

has the typical C-terminal DNA-binding domain and the N-

terminal transactivation domain [39,40]. The MscPV1 E4 gene is

located in the E region and overlaps with E2 but is transcribed in a

different reading frame. An LLXLL motif is found at the N-

terminus of viral E4 [41]. Downstream from the leucine-rich

region is a proline-rich region. PV E4 proteins usually have high

proline content (15–20% on average), MscPV1 E4 protein also has

the typical high proline content (15 proline residues out of 106 aa).

Both L1 and L2 contain a series of arginine and lysine residues

at their carboxy termini, likely to function as a nuclear localization

signal. The long control region (NCR) usually contains several

regulators of the PV replication. In MscPV1, the NCR is 481 bp

and demonstrates an E1-binding site (TGATTGTTGTAAAC-

TAC) flanked by two typical palindromic E2-binding sites

(ACCN6GGT) [42]. At its 59 end, the NCR also contains one

polyadenylation site (AATAAA) which is necessary for the

processing of the L1 and L2 capsid mRNA transcript [43]. In

the 39 end, the MscPV1 NCR contains a classical TATA box

(TATAAA) of the E6 promotor, located 26 nucleotides upstream

of the E6 start codon (Fig. 2).

Phylogenetic analysis and sequence similarity to other
papillomaviruses

Phylogenetic analysis confirmed that MscPV1 forms a genetic

lineage that is distinct from the previously reported PVs with

complete genome (Fig. 3). Comparison of L1 gene showed that

MscPV1 had 60% nucleotide and 58.6% amino acid identity to

the closest related PV, Canine papillomavirus 6 (Table 2).

MscPV1 also shared only 52.4% nucleotide identity to another

PV isolated from an Egyptian fruit bat (Rousettus aegyptiacus)

(Table 2) [44]. MscPV1 cannot be placed in one of the existing

genera, it therefore represents the first member of a novel PV

genus, Dyolambda-papillomavirus, according to the classification

criteria [31,45].

Prevalence of MscPV1 in bats
None of the 419 samples from 257 M. Schreibersii bats screened

by PCR was positive.

Discussion

Virus discovery has traditionally been done by phenotypic

techniques such as animal inoculation or chick embryo inoculation

which are later replaced by tissue culture. With major advance in

molecular and sequencing technology, many viruses that may not

adapt to grow in tissue cultures were discovered by PCR and

sequencing in various formats such as consensus primer PCR with

or without hybridization on microarray, rolling circle amplifica-

tion for virus with circular genome, representational difference

analysis by subtractive hybridization, sequence independent PCR

amplification with shotgun sequencing. The advent of high-

throughput sequencing has allowed the discovery of many novel

animal viruses such as novel species of porcine circoviruses,

astroviruses and bocaviruses [46,47], novel sapoviruses, noro-

viruses, dependoviruses in sealions [48], novel kobuvirus and

sapovirus in diarrheal dogs [49], novel hepacivirus in dogs affected

by outbreak of respiratory illness [50], novel anellovirus in sea seals

[51], novel astrovirus in brain tissue of mink suffering from shaking

mink syndrome [52] and many other virus families in human [53],

turkey [54], bat guano [55], rodent excreta [56] and insects

[57,58]. Metagenomics has also led to the study of the viral

Table 1. Size and position of predicted ORFs and NCR of
MscPV1 and the predicted molecular masses of the translated
proteins.

ORF Position Length
Molecular mass
(kDa) pI

nt aa

E6 1–426 426 141 16.5 9.84

E7 416–691 276 91 9.8 4.99

E1 678–2687 2010 669 75.9 5.62

E2 2626–3768 1143 380 43.4 9.73

E4 3227–3529 303 100 11.5 6.42

L2 3946–5538 1593 530 57.5 6.36

L1 5546–7051 1506 501 56.6 6.84

NCR 7052–7531 480 159 NA NA

doi:10.1371/journal.pone.0043986.t001
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diversity and community in hosts and the association of virus and

disease [59–61].

In this study, we report the second bat PV, MscPV1, with only

52.4% nucleotide identity to the Egyptian fruit bat (Rousettus

aegyptiacus) papillomavirus RaPV1. Compared to other PVs, the

highest nucleotide and amino acid identities, from CPV6, were

only 60% and 58.6%. According to the published classification

criteria, MscPV1 should be designated the first member of a novel

PV genus, Dyolambda-papillomavirus [31,45].

Comparing MscPV1 with the phylogenetically closely-related

PVs, namely, RaPV1, HPV41, EdPV1 and CPV6, all of MscPV1,

RaPV1, EdPV1 and CPV4 contain the typical PV ORFs, coding

for five putative early proteins (E6, E7, E1, E2, E4), and two

putative late capsid proteins (L2 and L1). The genome of HPV41

consists of an additional E5 ORF located between E4 and L2

ORFs and three additional short ORFs, X, Y and Z downstream

of L1 [62]. The E5 ORF, which is absent in MscPV1, exists in

genital HPVs and in the BPV-1 related fibropaillomaviruses, codes

for the E5 protein, which is associated with transformation of host

cells and carcinogenesis [62,63]. The predicted E7 protein of

MscPV1 contains a modified zinc-binding domain with 30 amino

acids (X30) between the two instances of CXXC. This nonclassical

motif was also identified in HPV41 and RaPV1 as well as BPV6,

CPV2, CPV7, CcaPV1, HPV4, HPV65, HPV95 and HPV116.

The E7 of EdPV1 exhibits the classical CXXCX29CXXC motif,

whereas CPV6 has the X28 modified motif. The E1 of MscPV1

contains the conserved ATP-binding site of the ATP-dependent

helicase (GPPDTGKS), which is identical to that of RaPV1; in

comparison, the motif is GPPNTGKS in EdPV1 and CPV6, and

GPSDTGKS in HPV41. This sequence conservation is not

unexpected, given the drastic decrease of ATPase activity upon

mutation of just the first proline or the lysine residue of the motif

demonstrated by a mechanistic study [64]. In the NCR of both

MscPV1 and RaPV1, two copies of the 12-basepair E2 protein-

binding motif ACCN6GGT are found. The genomes of HPV41

and EdPV1, notably, do not contain this consensus nucleotide

sequence; their E2 binding sites are represented by the sequences

ACCN6GTT, AACN6GGT, and AACN6GTT [62,65].

Figure 3. Maximum likelihood phylogenetic tree of the L1
nucleotide sequences of 79 PVs. The PV genus of each strain is
indicated. PVs with putative PV genera that are currently unclassified
are marked by asterisks. The PV discovered in this study is shown in
bold. Scale bar indicates 0.2 inferred substitutions per site. AaPV, Alces
alces papillomavirus; BpPV, Bettongia penicillata papillomavirus; BPV,
Bovine papillomavirus; CcaPV, Capreolus capreolus papillomavirus; CcPV,
Caretta caretta papillomavirus; CgPV, Colobus guereza papillomavirus;
ChPV, Capra hircus papillomavirus; CPV, Canine papillomavirus; EcPV,
Equus caballus papillomavirus; EdPV, Erethizon dorsatum papillomavirus;
EePV, Erinaceus europaeus papillomavirus; FcPV, Fringilla coelebs
papillomavirus; FdPV, Felis domesticus papillomavirus; FlPV, Francolinus
leucoscepus papillomavirus; HPV, Human papillomavirus; LrPV, Lynx
rufus papillomavirus; MaPV, Mesocricetus auratus papillomavirus; MfPV,
Macaca fascicularis papillomavirus; MmiPV, Micromys minutus papillo-
mavirus; MmPV, Macaca mulatta papillomavirus; MnPV, Mastomys
natalensis papillomavirus; MscPV, Miniopterus schreibersii papillomavi-
rus; MsPV, Morelia spilota spilota papillomavirus; OaPV, Ovis aries
papillomavirus; OcPV, Oryctolagus cuniculus papillomavirus; OvPV,
Odocoileus virginianus papillomavirus; PcPV, Puma concolor papilloma-
virus; PePV, Psittacus erithacus timneh papillomavirus; PlpPV, Panthera
leo persica papillomavirus; PlPV, Procyon lotor papillomavirus; PpPV,
Pygmy chimpanzee papillomavirus; PsPV, Phocoena spinipinnis papillo-
mavirus; RaPV, Rousettus aegyptiacus papillomavirus; SfPV, Sylvilagus
floridanus papillomavirus; SsPV, Sus scrofa papillomavirus; TmPV,
Trichechus manatus latirostris papillomavirus; TtPV, Tursiops truncatus
papillomavirus; UmPV, Ursus maritimus papillomavirus; UuPV, Uncia
uncia papillomavirus; ZcPV, Zalophus californianus papillomavirus.
doi:10.1371/journal.pone.0043986.g003
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Family Papillomaviridae is a large family of small, non-enveloped,

double stranded DNA viruses which infect cutaneous and mucosal

epithelium. Given the association between PV and cancers in

humans and other animals, it is not surprising that the first bat PV

was found in the basosquamous carcinoma of a fruit bat. PVs are

stable and slow-evolving viruses, with an estimated mutation rate

of 0.73 to 1.261028 nucleotide substitutions per base per year

[66,67]. No genomic recombination has ever been documented.

Novel PVs, therefore, have been believed to descend from the slow

accumulation of point mutations and different ancient PV lineages

have possibly co-evolved and co-speciated with their vertebrate

host species [68,69]. Nonetheless, a more recent study showed that

recombination of PV contributes significantly to the evolution of

PV, and the role of host transfer cannot be neglected. Notably,

both were observed in the HPV41-EdPV1 clade [70]. This is

concordant with the current study, in which nucleotide and amino

acid sequence analysis demonstrated a higher degree of similarity

between our novel MscPV1 and EdPV1 in North American

porcupine, instead of another bat PV, RaPV1. We note, however,

our findings may only represent an additional exception and do

not refute the generalization that PVs evolve mainly by co-

evolution with hosts instead of interspecies transmission, recom-

bination or other horizontal genetic transfer events. While current

evidence suggests that host shift may have contributed to the

emergence of this lineage of bat PV, as evidenced by the different

clades in which the MscPV1 and we reckon that there may be bat

PV lineages that are yet to be discovered, and such ‘‘missing-links’’

may enable the evolutionary history of MscPV1 to be put into

context, i.e. whether the MscPV1 has undergone unexpected,

rapid divergent evolution or indeed represents a lineage of bat PVs

that has arisen from host shift. Although divergence time

estimation using the L1 nucleotide sequence of MscPV1 demon-

strated a later divergence compared to the host species (Fig. S1), it

differed from the estimate based on E1 nucleotide sequences

(Fig. S2) and does not in itself substantiate the host transfer

(Supporting Information S1). In the current study, the more

convincing evidence seemingly still resides in the sister taxa status

of MscPV1 and HPV41/EdPV1. The relative importance of virus-

host co-divergence and interspecies transmission in driving the

genomic evolution of PV remains to be debated [71].

Unlike the first report of bat PV, no obvious skin or mucosal

lesion was noted by the attending veterinarian and the bat was

probably latently infected with PV. M. schreibersii is a cave-dwelling

bat with body weight ranged from 11 to 18 g. It roosts in

abandoned mines, water tunnels, drainage and weep holes of the

water catchment. According to the baseline surveys of the AFCD

of Hong Kong, M. schreibersii is considered as common and

widespread throughout Hong Kong countryside with a colony size

from 50 individuals to several hundreds, often associated with M.

pusillus, Myotis pilosus and M. chinensis in their roosting sites in

summer. In overseas studies, it is reported as a migratory bat

species which may travel a fairly long distance in spring to find

their breeding sites [72]. Given the possibilities of asymptomatic

carriage and long-distance, interspecies transmission, further

studies are warranted to elucidate the evolutionary origin and

epidemiology of this newly proposed genus of bat PV.

Supporting Information

Figure S1 Estimation of the time to the most recent
common ancestor for MscPV1 using L1. The maximum

likelihood tree constructed by PhyML using L1 were used to

estimate the divergence times in MEGA5. Virus name abbrevi-

ations are the same as those in the Fig. 3 legend. MscPV1 was

bolded.

(TIF)

Table 2. MscPV1 nucleotide and amino acid identities with members of the genera Kappapapillomavirus, Lambdapapillomavirus,
Mupapillomavirus, Nupapillomavirus, Sigmapapillomavirus, and Psipapillomavirus.

Virusa GenBank accession no Genus L1 L2 E1 E2

nt aa nt aa nt aa nt aa

CPV6 FJ492744 Lambda 60.0 58.6 45.7 35.4 54.9 44.4 48.0 40.3

CPV1 D55633 Lambda 59.2 57.4 47.8 37.6 53.6 43.2 48.7 41.3

PlpPV1 AY904724 Lambda 59.2 59.5 45.4 37.3 52.7 42.4 47.8 39.4

PlPV1 AY763115 Lambda 59.0 59.1 46.4 36.9 54.5 46.1 51.0 45.3

EdPV1 AY684126 Sigma 58.9 58.3 44.5 32.0 49.9 37.4 45.5 34.6

FdPV1 AF480454 Lambda 58.9 59.1 45.4 37.5 53.3 43.4 48.3 38.9

HPV1 V01116 Mu 58.8 56.5 45.4 35.4 53.4 43.5 48.3 39.2

UuPV1 DQ180494 Lambda 58.8 58.4 45.3 38.2 52.5 42.9 47.1 40.5

SfPV1 K02708 Kappa 58.7 55.9 43.7 31.8 51.5 40.8 44.7 35.6

LrPV1 AY904722 Lambda 58.6 59.0 45.5 37.7 52.6 43.0 50.5 41.4

PcPV1 AY904723 Lambda 58.6 58.4 45.0 36.4 53.5 46.0 47.8 39.2

HPV41 X56147 Nu 58.1 56.4 43.8 34.1 48.3 36.4 44.1 32.3

HPV63 X70828 Mu 57.6 57.9 46.3 36.0 52.3 42.1 50.1 40.7

OcPV1 AF227240 Kappa 57.5 55.6 43.5 32.7 52.2 43.5 48.5 38.3

RaPV1 DQ366842 Psi 52.4 44.8 40.0 27.6 48.7 38.3 45.3 31.7

aCPV6, Canine papillomavirus 6; CPV1, Canine oral papillomavirus; PlpPV1, Panthera leo persica papillomavirus type 1; PlPV1, Procyon lotor papillomavirus type 1; EdPV1,
Erethizon dorsatum papillomavirus type 1; FdPV1, Felis domesticus papillomavirus type 1; HPV1, Human papillomavirus type 1a; UuPV1, Uncia uncia papillomavirus type
1; SfPV1, Sylvilagus floridanus papillomavirus type 1; LrPV1, Lynx rufus papillomavirus type 1; PcPV1, Puma concolor papillomavirus type 1; HPV41, Human papillomavirus
type 41; HPV63, Human papillomavirus type 63; OcPV1, Oryctolagus cuniculus papillomavirus type 1; RaPV1, Rousettus aegyptiacus papillomavirus type 1.
doi:10.1371/journal.pone.0043986.t002
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Figure S2 Estimation of the time to the most recent
common ancestor for MscPV1 using E1. The maximum

likelihood tree constructed by PhyML using E1 were used to

estimate the divergence times in MEGA5. Virus name abbrevi-

ations are the same as those in the Fig. 3 legend. MscPV1 was

bolded.

(TIF)

Supporting Information S1

(DOC)
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