The authors have declared that no competing interests exist.
Conceived and designed the experiments: BHB KAD CFS. Performed the experiments: BHB KAD BRE CGA AKC EB DC BM JDC. Analyzed the data: BHB KAD BRE STN US. Contributed reagents/materials/analysis tools: LKM. Wrote the paper: BHB KAD.
Lujo virus (LUJV) is a novel member of the
The pathogenic arenaviruses are a diverse group of human pathogens capable of causing a wide range of human illness ranging from encephalitis to severe hemorrhagic fever throughout the New and Old World. In 2008, a previously unknown virus (now named Lujo virus) caused a high case fatality outbreak (80%) in southern Africa. Limited data available from these patients indicated that LUJV HF was characterized by thrombocytopenia, elevated liver transaminases, coagulopathy, viral antigen in multiple tissues, neurological symptoms in some cases, and eventual death. The source of exposure of the index patient remains unknown. Due to the unusually high lethality and rapid human to human spread, we sought to develop an animal model of Lujo hemorrhagic fever. We report here that after infection with Lujo virus, Strain 13/N guinea pigs develop a hemorrhagic fever syndrome similar to the disease observed in human patients. This animal model of severe Lujo hemorrhagic fever is a critical first step to increase our understanding of this highly pathogenic virus, and to develop anti-viral therapeutics or experimental vaccines for this new and unique threat to human health.
Beginning in the 1930s, novel pathogenic arenaviruses have been increasingly recognized as emerging threats to human health
The index patient died from the infection approximately 12 days after the onset of the presumed first symptoms, and 2 days after hospitalization in Johannesburg. During transport and hospitalization of the index patient, a total of 4 health care workers (3 nurses and 1 janitor) were infected with LUJV. After a period of 10–13 days of progressively severe illness, 3 of these individuals died, resulting in a total case fatality of 80% (4/5). Limited data available from these patients indicated that LUJV HF was characterized by thrombocytopenia, elevated liver transaminases, coagulopathy, viral antigen in multiple tissues, neurological symptoms in some cases, and eventual death. While the outbreak was small, the ease with which LUJV spread among the primary, secondary, and tertiary contacts with the index patient, and the lack of a defined etiology, caused significant alarm. The viral cause of the outbreak was identified as a novel arenavirus only after the last case fatality
The arenaviruses are a large and genetically diverse group of over 30 viruses broadly divided into New World and Old World serogroups. They are exclusively rodent-borne, except Tacaribe virus, which was isolated from a bat
All arenaviruses are enveloped particles containing bi-segmented, single-stranded, ambi-sense RNA genomes encoding a total of 4 genes
Although many experimental vaccine candidates and antiviral drugs are under development
We next attempted to develop a LUJV HF model in guinea pigs (
All work with infectious virus or infected animals was conducted at the Centers for Disease Control and Prevention (CDC, Atlanta, Georgia, USA), in a biosafety level 4 laboratory. All laboratorians and animal handlers adhered to international biosafety practices appropriate for biosafety level 4, strictly following infection control practices to prevent cross-contamination between individual animals. All animals were individually housed in an isolator-caging system (Thoren Caging, Inc., Hazleton, PA, USA) with a HEPA-filtered inlet and exhaust air supply.
All procedures and experiments described herein were approved by the CDC Institutional Animal Care and Use Committee (IACUC) and conducted in strict accordance with the
A total of 8 litters of pregnant outbred mice were obtained from a commercial vendor (Charles River Laboratories, Wilmington, MA, USA). All mice were housed as individual family units, and supplied a commercially available mouse chow and water
A total of 47 strain 13/N guinea pigs (healthy adult males and females aged 1.0–1.5 years) were obtained from an established breeding colony located at the University of Iowa (Ames, IA, USA). All animals were housed individually on deep soft bedding and given food (commercial guinea pig chow, alfalfa cubes, and fresh green parsley), and water supplemented with guinea pig appropriate vitamins
Wild-type LUJV (wtLUJV) from the Centers for Disease Control and Prevention Viral Special Pathogens Branch reference collection was passaged in VERO-E6 cells five times before use. A full-length recombinant LUJV (recLUJV) was derived from cDNA plasmids using T7-driven reverse genetics as reported in Bergeron et al. (
For infection, groups of 10 animals (2 or 14 days old) were inoculated intracranially with 500 focus-forming units (FFU) of wtLUJV, wtLASV-Josiah, or wtJUNV-XJ13 in 10 uL of Dulbecco's modified Eagle's medium (DMEM; Invitrogen Corp., Grand Island, NY, USA) using a 0.3 mL 29-gauge tuberculin syringe, or with up to 2.0×103 FFU of wtLUJV by either subcutaneous or intraperitoneal routes following techniques described in
For infection, all animals were briefly anesthetized with isoflurane vapors and inoculated intraperitoneally in the lower right quadrant using a 25-gauge 5/8 inch needle attached to a 1 mL syringe. All animals were inoculated with 250 uL containing 1.0×105 FFU of either wtLUJV (N = 28) or recLUJV (N = 13), or with sterile diluent (DMEM, Invitrogen; N = 6). After infection, all animals were weighed and rectal temperatures taken daily. Each animal was observed and its health assessed and scored by experienced CDC veterinarians or animal health technicians at least twice per day. The experiment was conducted in 2 phases: 1) to assess the overall lethality of wtLUJV or recLUJV infection, groups of 10 animals were infected and monitored at least twice daily until found dead or euthanized according to a predetermined euthanasia/clinical illness scoring algorithm indicating severe disease or moribundity; and 2) a serial euthanasia phase was conducted to more closely follow the kinetics of LUJV dissemination and pathology. To accomplish the second phase, groups of 3 animals were scheduled for euthanasia at 2, 5, 7, 9, 12, or 14 days PI with wtLUJV, and at day 9 PI with recLUJV. Due to greater than expected virulence of LUJV, the actual days of serial euthanasia and specimen collection were modified as follows: day 2, N = 3; day 5, N = 3; day 7, N = 3; day 9, N = 3 wt, N = 3 rec; day 12, N = 3; day 14, N = 2. Two moribund animals from the serial euthanasia phase were euthanized on day 11 and were considered as terminal cases; the data from these animals was combined with data collected from the first phase of the experiment. The sham-inoculated control animals (N = 6) were euthanized at the end of the study, approximately 21 days post-inoculation.
Specimens of liver, lung, spleen, kidney, whole blood, urine, and/or pleural effusion or abdominal fluid (if present) were collected sterilely at 2, 5, 7, 9, 12, and 14 days PI, and from moribund animals that reached experimental end-points. For RNA extraction, approximately 100 mg specimens of tissues were stored in RNA extraction buffer (Tripure, Roche Diagnostics, Indianapolis, IN, USA) at −80°C until homogenization in a high-throughput tissue grinder (Genogrinder2000, BT&C Inc., Lebanon, NJ, USA). An equal volume of molecular grade chloroform was added to each specimen homogenate and vortexed. After a 10 minute spin at >10,000 rpm in a microcentrifuge, the supernatant was collected and an equal volume of 70% ethanol was added. The supernatant and ethanol was used for total RNA extraction (RNAeasy 96 platform, Qiagen, Valencia, CA, USA) following the manufacturer's recommended protocols.
Briefly, LUJV RNA was detected using qRT-PCR with primers and probe with internal (Zen, Integrated DNA Technologies) and 3′ Iowa Black-FQ quencher moieties specific for the NP gene (forward primer:
Guinea pig whole blood was collected by intracardiac techniques into either EDTA-coated or heparin-coated vacutainer tubes. Complete blood counts (CBC) were obtained using the Hematrue blood analyzer (HESKA, Loveland, CO, USA). Blood chemistry profiles were obtained from heparinized samples using either the Piccolo point of care chemistry analyzer (Abaxis, Union City, CA, USA) or the Hitachi P-module analyzer (Hitachi Hi-Tech, Tokyo, Japan).
Liver, spleen, lung, and kidney tissues were collected 2, 5, 7, 9, 12, and 14 days PI (serial euthanasia groups), and from moribund animals that reached experimental end-points of terminal disease. Specimen RNA was treated with DNase I (Qiagen) followed by RNA cleanup utilizing the RNeasy Mini columns and wash buffers (Qiagen) per manufacturer's recommendations. Total RNA was quantified after DNase I treatment and cleanup using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Previously reported gene specific primers were used to detect interleukin (IL)-1b, IL-2, IL-8, IL-12p40, tumor necrosis factor alpha (TNFa), transforming growth factor beta (TGFb), regulated upon activation normal T-cell expressed and secreted (RANTES), interferon gamma (IFNg), monocyte chemotactic protein (MCP)-1, inducible nitric oxide synthetase (iNOS), and GAPDH
At the time of collection, tissue specimens were fixed in 10% neutral buffered formalin and gamma-irradiated (2.0×106 RAD) prior to sectioning into 4 um-thick slices and staining with hematoxylin and eosin following routine histology protocols.
All analyses were completed using the PRISM v5.0 program (Graphpad, LaJolla, CA, USA). Potentially significant differences between wtLUJV and recLUJV groups were evaluated using a student's t-test. In subsequent analyses, wtLUJV and recLUJV data were combined for all day 9 and terminal group analyses. For the complete blood counts, clinical chemistry, and gene regulation data, significant differences between LUJV-infected and sham-infected animals at each time point were analyzed using a one-way analysis of variance (ANOVA) with Dunnett's adjustment for multiple comparisons (*p<0.05; **p<0.01, ***p<0.001).
Mice were monitored for 28 days PI with 500 FFU of wtLUJV, wtLASV-Josiah, wtJUNV-XJ13, or inoculation with DMEM as a negative control. As expected, wtJUNV-XJ13 caused uniform neurological signs and lethality by 15 days PI in 2-day-old, but not 14-day-old mice. In contrast and as expected, wtLASV infection resulted in near uniform (90%) lethality in 14-day-old weanling mice, but was non-lethal in 2-day-old newborn mice. Infection was confirmed by the detection of anti-Lujo virus specific antibodies at 28 days post-infection in 3 surviving animals. Surprisingly, wtLUJV did not cause any signs of clinical illness or lethality in either 2-day-old or 14-day-old mice regardless of the dose (up to 2.0×103 FFU) or inoculation route (intracranial, subcutaneous, or intraperitoneal) (
All animals infected with either the wtLUJV (N = 28 total; full-duration disease monitoring group N = 10; serial euthanasia group N = 18) or with recLUJV (N = 13 total; full-duration disease monitoring group N = 10; serial euthanasia group N = 3) experienced an onset of progressive illness starting approximately 5 days PI. The illness was characterized clinically by pyrexia, loss of body weight, bilateral, encrusted, light tan-colored ocular discharge, dehydration (as demonstrated by sunken eyes and tacky mucous membranes), ruffled fur, piloerection, lethargy, hematuria, frank external genitourinary hemorrhage (in 1 animal), and eventual moribundity followed rapidly by death (
A. Survival times of guinea pigs inoculated with either wild-type Lujo virus (wtLUJV), recombinant LUJV (recLUJV), or sham DMEM controls. Mean survival times of animals infected with wtLUJV and recLUJV were not significantly different. B. Body temperatures (rectal) depicted by group per day post-infection (PI) or post-sham inoculation. Groupwise means ±1 standard error of the mean (SEM) are depicted. C. Percent (%) change in body mass by group per day PI or after sham inoculation. In all panels, asterisks depict the day of the onset of detectable clinical signs (ocular discharge). All data were normalized to an average starting weight days −5 to 0 pre-infection. wtLUJV = dark blue circle; recLUJV = open red box; sham controls = closed grey triangle.
Starting at 5–6 days PI with both wtLUJV or recLUJV, the animals uniformly developed a febrile response ranging from a mean of 39.6°C on day 5 PI to a peak of 42.1°C on day 11 PI (
By day 6 PI, the majority of LUJV-infected animals began to lose weight, with all animals demonstrating at least 5% body mass loss by day 7 PI (
Within 48 h PI, a dramatic rise in viral load, measured by qRT-PCR and reported as tissue culture infective dose 50 (TCID50) equivalents (eq), was detected in all tissues and fluids analyzed (whole blood: 4.64×102 eq; liver: 1.83×105 eq; spleen: 8.13×104 eq; lung: 6.22×103 eq; kidney: 5.24×103 eq; urine: 2.20×103 eq) (
Viral RNA loads (qRT-PCR-derived tissue culture infective dose 50 (TCID50) equivalents) in blood, liver, spleen, lungs, and kidney are shown.
Automated differential complete blood counts were conducted on groups of 3 animals at days 2, 5, 7, 9, 12, or 14 PI with wtLUJV; day 9 PI with recLUJV; and on moribund animals (N = 9 wtLUJV; N = 8 recLUJV) (
Individual animal blood cell parameters. In all panels, each animal's data are depicted along with the groupwise mean (horizontal bar) ±1 SEM (error bars). Panel A. Leukocytes, B. Granulocytes, C. Lymphocytes, D. Monocytes, E. Platelets, and F. Hematocrit are depicted. Significant deviations from normal control animal values are indicated by asterisks (p-value: *<0.05; ***<0.001). wtLUJV = dark blue circle; recLUJV = open red box; sham controls = closed grey triangle.
Comprehensive blood chemistry analyses were completed using lithium-heparinized whole blood (
A. Total Protein, B. Aspartate transferase (AST), C. Alanine transferase (ALT), D. Alkaline phosphatase (ALP), E. Blood urea nitrogen (BUN) and F. Creatinine. In all panels, each animal's data are depicted along with the groupwise mean (horizontal bar) ±1 SEM (error bars). Significant deviations from normal control animal values are indicated by asterisks (p-value: *<0.05; **<0.01; ***<0.001). wtLUJV = dark blue circle; recLUJV = open red box; sham controls = closed grey triangle.
No animal displayed overt signs of gross tissue pathology until 7 days PI. Starting at day 7 PI, liver tissues became progressively more pale and friable, and demonstrated enhanced reticular patterns of reddening suggestive of locally extensive to diffuse hepatic congestion; these signs persisted through day 14 PI or to the point of moribundity or death (
A. Whole liver from terminally infected animal. Note the marked congestion and extensive pan-lobular zone of hepatic damage due to infarction near the liver hilus that is surrounded by a well-demarcated hyperemic rim of hepatic parenchyma (arrow). B. Cross-section of the liver in panel A at the level of the main portal vein through the center of a zone of hepatic necrosis and infarction (asterisk). C. Another example of the severe hepatic congestion, necrosis, and infarction observed in all terminal cases (arrow). D. Frank hemorrhage (>35 mL) in the abdominal cavity. E. Severely congested and hemorrhagic mesenteric lymph nodes (asterisks), and severe congestion and hemorrhage on the serosal surface of the cecum (arrows). F. Mucosal surface of the cecum in panel E; note the severe congestion and extensive petechiation. G. Example of the severe dilated cardiomyopathy observed in the majority of infected animals beginning at approximately day 12 PI. H. Serosal surface of the bladder; note the severe petechiation. I. Contents of the bladder in panel H, consistent with hematuria and frank hemorrhage collected
We examined a broad array of tissue specimens collected from guinea pigs 2, 5, 7, 9, or 14 days PI and from terminal cases (
A. High-magnification photomicrograph of a liver from a guinea pig infected with LUJV. The center is composed of necrotic hepatocytes admixed with cellular debris, and is surrounded by moderate numbers of histiocytes. Hematoxylin and eosin stain; 200× original magnification; scale bar = 50 µm. B. Low magnification photomicrograph of the interface of normal (N) and infarcted (I) area of the liver from a guinea pig with LUJV infection. The infarcted area is cell-poor, and inflammatory cell reaction (arrow) is observed at the interface. Hematoxylin and eosin stain; 100× original magnification; scale bar = 100 µm. C. High-magnification photomicrograph of the papillary muscles of the heart from a guinea pig with LUJV infection. The muscle fibers (solid arrows) are slightly swollen and hypereosinophilic. Small nests of mononuclear inflammatory cells (dashed arrow) separate the myofibers. Hematoxylin and eosin stain; 200× original magnification; scale bar = 50 µm. D. High magnification photomicrograph of the mesenteric lymph-node from a guinea pig infected with Lujo virus (terminal case). The medullary sinuses are filled with large numbers of erythrocytes and there are scattered macrophages that contain intracytoplasmic erythrocytes (erythrophagocytosis, arrows). This lesion is compatible with a prior hemorrhage in the drainage area of the mesenteric lymph-node. Hematoxylin and eosin stain, 400× original magnification, scale bar = 20 µm. Panels A, B, C, D (wtLUJV) infected.
Except in terminally ill cases, the hepatic necrotic areas were usually minute, affecting only a few (<20) hepatocytes. A mixed (heterophilic and lymphohistioplasmacytic) inflammatory infiltrate was usually admixed with necrotic hepatocytes (
Most infected guinea pigs also developed minimal to mild myocardial necrosis with or without a histiocytic inflammatory response (
The kidneys of most animals were also affected. Most kidneys showed tubular degeneration, with or without mineralization and varying (usually mild) degree of interstitial lymphoplasmacytic infiltrates. Tubular degeneration was most likely due to LUJV infection. However, it is unclear if the interstitial inflammation was related to LUJV infection or was an incidental finding.
In addition to hepatic necrosis, myocarditis, and kidney pathology, the most severely affected animals developed other histologic lesions, including focal mild cortical cell necrosis in the adrenal gland, hemosiderin-laden macrophages, and erythrophagocytosis in mesenteric lymph nodes (
Generally, specimens from the lung, spleen, skeletal muscle, uterine horn or testes, adrenal gland, and urinary bladder appeared normal by routine hematoxylin and eosin histology. Other incidental findings not directly related to LUJV infection included mild to moderate focal endometritis (2 animals), and a small basal cell tumor in the stomach wall of one animal.
Specimens of liver, lung, spleen, and kidney were collected 2, 5, 7, 9, 12, or 14 days PI, from terminal endpoint animals, and from sham-inoculated controls. Relative quantities of IL-1b, IL-2, IL-8, IL-10, IL-12p40, IFNg, MCP-1, iNOS, RANTES, TNFa, and TGFb mRNA, normalized to GAPDH, were analyzed by qRT-PCR. These were compared as groups between LUJV-infected and sham-inoculated control animals (
Heat map depicting the fold-increase or fold-decrease of mRNA from visceral tissues of infected animals compared to tissues from mock-inoculated animals. Deep blue reflects maximal fold-decrease detected (approximately −5 fold). Increasingly intensity of pale yellow to orange to red indicates range of fold-increase from +5 to a maximum of approximately +101 fold in IFNu at day 14 PI and in terminal cases. Fold-changes between −2 and +2 are depicted in white. Heat map generated with free downloadable software available from the Broad Institute (GENE-E Array,
The pathogenic arenaviruses are genetically diverse, globally distributed, and capable of causing human illness ranging from encephalitis to severe and often lethal HF. Divided into New World and Old World lineages, these rodent-borne viruses are most often transmitted to humans by direct contact or aerosol exposure to infectious rodent excreta, or, in some cases, via a chain of human-to-human transmissions within hospital settings. The overall public health impact can range from only a few cases (e.g., Sabia or Chapare viruses) to over 100,000 cases per year (e.g., LASV)
A number of factors mark LUJV as a unique arenavirus. Although the data from the 2008 outbreak are limited, the high case fatality was striking compared with most other arenavirus outbreaks that typically are associated with case fatalities of 10–40%
To assess the
In marked contrast with the mouse results, LUJV caused severe, rapidly progressive, and uniformly lethal and hemorrhagic disease in strain 13/N guinea pigs. In this model, we observed an apparent incubation period of 5 to 6 days from the time of inoculation to the first clinical signs of illness (fever and weight loss). Over the next 24 to 48 h, the animals began to display signs of progressive illness (bilateral ocular discharge, continued fever, weight loss, and dehydration) until they were found dead or humanely euthanized when moribund. By day 5 PI, significant hematological changes began to occur, including hypoproteinemia, thrombocytopenia, and lymphopenia (
Previous studies of human pathogenic New World (JUNV, Guanarito (GTOV), Machupo (MACV)) and Old World (LASV) arenaviruses using rodents and other small animal models failed to demonstrate clear consistent signs of HF (reviewed in
The rapid rise and magnitude of LUJV-specific antigen deposition, histologic pathology, and RNA titers in tissues, blood, urine, and abdominal fluid were surprising. Within 48 h of infection, the virus already disseminated to the liver, spleen, kidneys, and lungs, and was rapidly replicating up to 1.8×105 TCID50 eq/g of liver. Interestingly, this high-titer replication continued for another 48–72 h before the onset of illness, indicated by increased body temperature and weight loss 5–6 days PI. Tissue viral loads remained extremely high throughout the course of the disease, with death occurring 11–16 days PI.
Like other arenaviruses, LUJV broadly modulates host immune responses during infection. The molecular basis of the seemingly high LUJV virulence in humans has not been characterized. However, recent work using reverse genetics-derived recombinant viruses indicates that LUJV has unique promoter elements that influence the expression of the viral NP and glycoprotein, and an unusually long intergenic region sequence on the viral L segment, which influences expression of the Z protein (Bergeron et al., in-review). Both LASV and lymphocytic choriomeningitis virus NP and Z proteins have immunomodulatory properties and function as potent antagonists of host cell antiviral responses (
The ability of LUJV to influence the immune response is illustrated in guinea pigs by the finding that, despite the very high viral loads by day 5 PI, pro-inflammatory cytokine/chemokine genes, such as IL-1b and RANTES, were downregulated 2–4-fold early during infection (
Overall, the pattern of gene induction and histological evidence from our study allow for the speculation that, in early stages of infection, the animals mounted a pro-inflammatory and innate immune response (presumably involving macrophages, neutrophils, NK-cells (i.e., Kurloff cells in the guinea pig), and/or NKT-cells) in multiple tissues. This was followed by a predominantly Th1 response dominated by IFNg, MCP-1, and IL-12p40, which likely stimulated activation and enhanced function presumably of NK cells, CD4+ TH1 cells, and/or CD8+ cytotoxic lymphocytes, resulting in a strong bias towards cell mediated immunity. Since LUJV is not highly cytopathic in cell culture, these responses may have been more deleterious than helpful to the host, due to immune cell-mediated destruction of vital organs. This hypothesis is consistent with recent work describing enhanced LASV pathogenesis due to deleterious T-cell mediated activation and stimulation of monocytes/macrophages, leading to tissue destruction in humanized HHD mice
Similarly to LASV infection in humans and non-human primate animal models, LUJV does not appear, at least at the mRNA transcriptional level, to elucidate an end-stage cytokine storm as seen in fatal hemorrhagic cases of infection with Ebola, Marburg, or Rift Valley fever viruses
The dramatic severity of the clinical illness, short survival times, high tissue viral loads, and the mRNA gene expression patterns in visceral organs further highlight the unique pathogenic characteristics of LUJV compared with other studies of LASV or JUNV
(EPS)
Click here for additional data file.
(EPS)
Click here for additional data file.
The authors would like to thank Drs. Tanya Klimova and Jonathan Towner for their excellent assistance in reviewing previous drafts of this manuscript; Dr. Katherine Paul, Desiree Harris, and Abiola Aminu for their assistance with the animal procedures and husbandry; Dr. Clifton P. Drew of the Infectious Disease Pathology Branch CDC for many fruitful and illuminating discussions, and Dr. Tamas Nagy of the University of Georgia Comparative Pathology Laboratory for his assistance with the histologic findings presented here. The findings and conclusions in this report are those of the authors alone and do not necessarily represent the views of the Centers for Disease Control and Prevention.