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Supplemental Appendix 

MODELING ASSUMPTIONS AND SENSITIVITY ASSESSMENTS 

In this supplement, we provide a description of the assumptions underlying the final models used 
to produce the estimates of impact rate and linear acceleration (LA) presented in the 
accompanying paper. In addition, we outline the methods used to derive the estimates and 
present sensitivity analyses in which the final estimates are compared to those derived under 
alternative modeling assumptions. 

For all models considered, we define an athletic exposure (AE) as any event, either a practice or 
a game, during which a player is at risk for an impact.  

Preliminary analyses of the data led to identification of five players, three tackle and two flag, 
with total impact counts of magnitude 10 g or larger that appeared implausible. These players 
were identified using an estimated cutoff value 𝐶, where  

𝐶 = 𝑄  + 2.5 ∗ 𝐼𝑄𝑅 

with 𝑄  equal to the 3rd quartile of the observed impact counts and 𝐼𝑄𝑅 is the interquartile range. 
Values for 𝑄  and 𝐼𝑄𝑅 were calculated separately for tackle and flag players resulting in separate 
values of 𝐶 for each football type. Based on this analysis, data for these five players were 
excluded from the primary analyses. As a result, unless otherwise specified, the data set on 
which these results are based contains 524 players. 

MODELING ASSUMPTIONS 

Estimation of Rates for Impacts ≥ 10 g 

Let 𝐼  be the total number of impacts, summed across all AEs, of 10 g magnitude or higher 
incurred by player 𝑖 on team 𝑗. We assume that 𝐼  is a sample from a Poisson distribution such 
that 

𝐼  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛  𝐴𝐸  𝜆   [1] 

where 

𝐴𝐸  = the number of AEs attended by player 𝑖𝑗, and 

𝜆  = the rate of impacts per AE experienced by player 𝑖𝑗. 

In addition, assume that the impact rate per AE can be modeled as 
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ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +  𝑢    [2] 

where 

𝑟𝑎𝑡𝑒  = the impact rate per AE among flag players,  

𝑟𝑟    = the ratio of the tackle to flag impact rates, 

𝑡𝑦𝑝𝑒       = 0 if team 𝑗 is a flag team and 1 if it is tackle, and 

𝑢            = a player-specific random effect such that 𝑢   ~  𝑁( 0, 𝛾 ). 

 

Note that, using the parameterization in equation [2], the natural log of the impact rate among 
tackle players can be estimated as 

 

ln(𝑟𝑎𝑡𝑒 )  =  ln(𝑟𝑎𝑡𝑒 )  +  ln(𝑟𝑟 ). 

 

We used Bayesian methods to estimate the parameters of the model given in equation [2].  A 
Bayesian approach was selected for a variety of reasons including flexibility of modeling random 
effects (Fong et al., 2010), the ability to estimate the uncertainty of functions of the model 
parameters, for example the probability of at least one impact per AE described below, and 
consistency with methods used to impute values for the missing AE counts for tackle players. 

To complete specification of the model, we made the following non-informative prior 
distributional assumptions for the parameters in equation [2] 

 

𝑟𝑎𝑡𝑒  ~ 𝑁(0, 1000), 

𝑟𝑟  ~ 𝑁(0, 1000), and 

      𝛾 ~ 𝑈(0,100) . 

 

Under the Poisson assumption on the impact counts, the probability that a player 𝑖𝑗 has 𝑋 
impacts during an AE is given by 

 

𝑃(𝑃𝑙𝑎𝑦𝑒𝑟 𝑖𝑗 ℎ𝑎𝑠 𝑋 𝐼𝑚𝑝𝑎𝑐𝑡𝑠) =  
 

!
 . 

 

Therefore, the probability that the player has at least one impact during an AE is  
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1 - 𝑃(𝑃𝑙𝑎𝑦𝑒𝑟 𝑖𝑗 ℎ𝑎𝑠 0 𝑖𝑚𝑝𝑎𝑐𝑡𝑠) =  1 −  𝑒   . 

 

Under the model in equation [2], the mean impact rate per AE among flag players is given by 

 

    𝜆  =   𝑒  ( ) 

     

while the mean impact rate for tackle players is  

 

    𝜆  =   𝑒  ( ),   

    

Therefore, estimates of the probabilities of at least one impact during a given AE are given by  

 

𝑝 =  𝑃(𝐹𝑙𝑎𝑔 𝑝𝑙𝑎𝑦𝑒𝑟 ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 𝑝𝑒𝑟 𝐴𝐸) = 1 −  𝑒       

 

And 

 

𝑝 =  𝑃(𝑇𝑎𝑐𝑘𝑙𝑒 𝑝𝑙𝑎𝑦𝑒𝑟 ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 𝑝𝑒𝑟 𝐴𝐸) = 1 −  𝑒   . 

 

Fitting the model given in equation [1] was complicated by the fact AE counts were not observed 
for tackle players. In the primary analyses, we addressed this missing data issue by setting  
𝐴𝐸  to a fixed value for each tackle player such that 

 

𝐴𝐸  = 𝑚𝑎𝑥  = the sum of the number of AEs in which any player on team 𝑗 had at least 
one recorded impact. 

 
 

This approach was assumed to be conservative in that using this definition for the missing tackle 
exposures likely leads to overestimation, on average, of the number of AEs attended by a player. 
This overestimation of the number of exposures tends to result in underestimation of the tackle 
impact rates. Note that AE data were observed for flag players and that this information was used 
in the analyses. 
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In an alternative approach, 𝐴𝐸  for tackle players was treated as missing information and 
estimated simultaneously with the model parameters in the Bayesian updating process. The 
assumptions and the results of using this imputation approach are described below. 

Model parameters were estimated using a Markov Chain Monte Carlo (MCMC) approach in 
which two chains with differing initial values were sampled. A total of 100,000 samples were 
selected from each chain with the initial 20,000 samples discarded to allow for convergence to 
the posterior distribution. In addition, only every 8th sample was retained in both chains to reduce 
potential autocorrelation. As a result, all estimates were based on 20,000 samples from the 
posterior distribution. Convergence was assessed using graphical comparison of the trace plots of 
the two sampling chains as well as convergence metrics such as the Gelman-Rubin statistic 
(Brooks and Gelman, 1998). 

Uncertainty associated with the estimates is summarized using the 95% credible interval. This 
interval is defined using the 2.5th and 97.5th percentiles of the collection of 20,000 samples from 
the posterior distribution of each parameter. Under the assumptions associated with the models, 
there is a 95% probability that the unknown true values of the parameter lies within the limits of 
the presented credible intervals. 

Estimation of Rates for Impacts ≥ 40 g 

For this analysis, 𝐼  is redefined as total number of impacts of 40 g magnitude or higher, 
summed across all AEs, incurred by player 𝑖 on team 𝑗. Preliminary analyses indicated that, for 
these higher magnitude impacts, the number of players with 𝐼  = 0 was greater than would be 
expected under a Poisson assumption for this random variable. To address this issue, we assume, 
for the higher magnitude impacts, that 𝐼  is sampled from a Zero Inflated Poisson (ZIP) (Ghosh 
et al., 2004) mixture distribution such that   

 

𝐼  =    0  with probability 𝑝     [3]  

                   𝐼∗   with probability (1 −  𝑝 )  

 

Where 

 

      𝐼∗   ~  𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐴𝐸  𝜆  .  

     

The assumed model for 𝐼∗ , the Poisson component of the mixture model, is given in equation 
[2]. The parameter 𝑝  reflects the probability that the impact count is equal to zero in excess 
of the probability of a zero associated with the Poisson distribution. Prior assumptions for the 
parameters of the model for 𝐼∗  are identical to those made for modeling rates for impacts ≥ 10g 
with the addition of a uniform non-informative prior assumption for 𝑝  such that 
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𝑝  ~ 𝑈(0,1). 

 

The estimated probabilities of at least one impact ≥ 40 g per AE were developed using a 
modification of the estimators used in analyses of the ≥ 10 g data, To account for the increase in 
the probability of zero impacts, the probability of at least one impact of 40 g or higher per AE 
was modeled as 

 

𝑝 =  1 − ( 𝑝 +  𝑒 )      

 

for flag players and as 

 

𝑝  =  1 −  ( 𝑝 +  𝑒 )      

 

for tackle. 

Estimates of the rates of impacts ≥ 10 g and ≥ 40 g, tackle to flag rate ratios and probabilities of 
at least one impact per AE based on the models in equations [2] and [3] are provided in Table 1. 

 

Table A1. Estimated impact rates1, rate ratio and probability of at least one impact per 
athletic event for tackle and flag players. 
 

Impact 
Magnitude 

Impact Rate  
(95% Credible Interval) 

Tackle/Flag 
Rate Ratio 

(95% Credible 
Interval) 

Probability ≥ 1 Impact 
(95% Confidence Interval) 

Type of Football Type of Football 
 

Flag 
 

Tackle 
 

Flag 
 

Tackle 
 

≥ 10 g2 
0.63  

(0.43,0.92) 
9.19  

(8.18,10.32) 
14.67 

(9.75,21.95) 
0.47  

(0.35,0.60) 
 

1.00 

 
≥ 40 g3 

0.04 
 (0.03,0.07) 

1.01 
 (0.90,1.13) 

23.00 
(13.59,39.55) 

0.04  
(0.03.0.07) 

0.63 
(0.58,0.67) 

 
 

1 Estimates of the impact rates were derived by setting the missing AE counts among tackle 
players to the number  
   of AEs in which any member of the player’s team experienced a recorded impact. 
2 Estimates derived under the model given in equation [2]. 
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3 Estimates derived using the model given in equation [3]. 
 
 
 
 
 
 
 
Linear Acceleration 
 
In our assessment of linear acceleration (LA), the outcomes of interest were the median and 95th 
percentile of each player’s collection of observed LA measurements. Because evaluation of LA 
is conditional on the player having at least one impact in the course of the season, three flag 
players with zero total impacts across all AEs were excluded from this analysis. 
 
We again used Bayesian methods to model the impact of playing tackle versus flag football in 
the assessment of linear acceleration. However, due to the LA measures being continuous 
outcomes, as opposed to impact counts, and the fact that several tackle and flag players had very 
large observed LA measures, we used a robust Bayesian approach to model these values 
(Williams and Martin, 2017). Methods used to identify potentially outlying LA measures and 
sensitivity assessment comparing the selected Student’s t assumption to other approaches are 
described below. 
 
Let 𝑙𝑎  be the linear acceleration measure, either the player’s median value or 95th percentile, for 
player 𝑖 on team 𝑗 and assume 
 
    𝑙𝑎  ~ 𝑡  𝜇  , 𝜎  , 𝑑𝑓       [4] 
 
 
where 𝑡  𝜇  , 𝜎  , 𝑑𝑓  is the Student’s t distribution with mean  𝜇 , variance 𝜎 , 𝑘 = 1,2 and 
𝑑𝑓degrees of freedom. The subscript, 𝑘, associated with the variance term reflects an assumption 
of differing values for this parameter for flag, 𝑘 = 1 and tackle, 𝑘 = 2, players. 
To complete the model definition, we assume that 
 
 
   𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒     [5]  
 
 
Where 
 

𝑙𝑎    = the mean of the LA measure among flag players, 
𝑙𝑎_𝑑𝑖𝑓𝑓   = the change in the mean LA measure due to playing     

   tackle, and 
𝑡𝑦𝑝𝑒    = 1 if team 𝑗 is tackle and 0 if team 𝑗 is flag. 
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Note that, using the parameterization in equation [5], the mean of the LA measure for tackle 
players can be estimated as 
 

𝑙𝑎 =  𝑙𝑎 +  𝑙𝑎_𝑑𝑖𝑓𝑓  . 
 

 
Under the Bayesian approach, the degrees of freedom for the Student’s t distribution is treated as 
another unknown random variable to be estimated in the updating process. 
 
Prior assumptions for the model parameters in equation [5] were 
 
    𝑙𝑎   ~  𝑁(0, 1000 ) 
   𝑙𝑎_𝑑𝑖𝑓𝑓   ~  𝑁(0, 1000 ),  
   1

𝜎
  ~  𝐺𝑎𝑚𝑚𝑎(0.001, 0.001) and 

   𝑑𝑓 ~ 𝑈(2,100). 
 
 
Estimates of the probability that the tackle LA average measure exceeds the associated flag value 
correspond to the percentage of samples from the posterior distribution in which the sampled 
tackle estimate exceeded that for flag.  

Estimates of the population averages for the LA measures among tackle and flag players are 
provided in Table 2. 

 

Table A2. Estimated average median and 95th percentile linear acceleration (LA) measures, 
increase in mean value due to playing tackle, degrees of freedom and probability that the 
tackle measure exceeds that among flag players. 

 

 
 

Measure 

Mean LA 
 (95% Credible Interval) 

 
Increase in Tackle 

Measure Compared to 
Flag 

 
Degrees 

of 
Freedom 

 
Probability 

Tackle ≥ 
Flag 

Type of Football 

Flag Tackle 

Median 16.84  
(15.57,18.21) 

18.15  
(17.95,18.34) 

 

1.31 
 (-0.08,2.59) 

 
3 (2,4) 

 
0.97 

95th 
Percentile 

33.51 
(28.23,39.08) 

52.55  
(51.06,54,09) 

 

19.06 
 (13.38,24.45) 

 
6 (4,12) 

 
1.00 
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SENSITIVITY ASSESSMENTS 

 

Comparison of Alternative Modeling Assumptions for Rates of Impacts ≥ 10 g 

Alternative modeling assumptions were evaluated for comparison to results developed using the 
model given in equation [2]. These alternative assumptions included addition of team level 
random effects, consideration of a Negative Binomial, as opposed to Poisson, assumption on the 
likelihood of the observed impacts and evaluation of potential effects of player age division on 
impact rates. Comparison of models incorporating these alternative assumptions to the random 
intercept model given in equation [2] were based on examination of, when appropriate, the 
Deviation Information Criteria (DIC) (Lun et al., 2013), evaluation of various posterior 
predictive measures between those produced using the assumed models and the observed data 
(Berkof and van Mechelen, 2000) and changes in the estimates of interest, impact rates and 
probabilities of at least one impact, as a result of altering assumptions 

The tables presented in this section provide summary information reflecting the results of fitting 
models for the rate of impacts ≥ 10 g under various assumptions. The goal is to compare the 
resulting estimates and model fit metrics to those associated with the estimates derived using the 
final model given in equation [2]. Four general areas are considered in the assessment: variation 
of assumptions on the hierarchical random effects included the model, evaluation of potential age 
division effects, examination of alternative distributional assumptions to address overdispersion 
in the impact data and, finally, an imputation-based sensitivity analysis focused on the 
uncertainty resulting from unobserved AE counts among tackle players.  

Four sets of model comparison tables are presented to summarize the results of each of these 
assessments with each set comprised of three tables. The first table in each set lists model-based 
estimates for the impact rates, rate ratio and probability of at least one impact. In addition, the 
table contains the DIC when appropriate (lower DIC is better). The second two tables reflect 
posterior predictive checks for each model. The posterior predictive estimates associated with 
each model and can be thought of as predictions for a future hypothetical set of players. In this 
application, we compare these posterior predictions to the observed data to provide an indication 
of agreement between the model predictions and the observed values. The second table in each 
set shows the percent of posterior predictive impacts within Division that exceed the observed 
impact count. Ideally this value should be close to 50 percent. The third table provides an age 
division-specific comparison of the posterior predictive standard deviations, that is the standard 
deviation of the posterior predictive impact estimates generated using the model, to the 
corresponding standard deviations of the observed impacts. We consider this comparison 
important due to the substantial overdispersion of impact count values in these data. In this case, 
it is desirable for the predictive values to be close to observed. 

In all comparisons below, the final model used for estimation of the rate of impacts ≥ 10 g, that 
is the model in equation [2], is denoted as the Common Player RE model reflecting an 
assumption that the player level random effects for both flag and tackle players are drawn from a 
common Normal distribution. To enable comparison, estimates produced using the Common 
Player RE model are highlighted in the tables. 
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Comparison of Poisson Models with Varying Assumptions on Hierarchical Random Effects 

All models in the first set of comparisons are the based on the assumption that the impact counts 
follow a Poisson distribution with differing assumptions on the sub-models for overdispersion 
beyond that expected among Poisson random variables. For this section, exposure among tackle 
players is assumed to be known and is set to number of events in which any player on that 
player’s team had at least one recorded impact. 

The Poisson rate component for all models is given by: 

 

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  

 

with the parameters in the model as defined in equation [2]. 

Models evaluated for estimation of impact rates include: 

 

Name   Model 

No RE   No Random effects (RE) 

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒   

Common Player RE Player level random effects (RE) with common RE distribution for flag 
and tackle players  

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒 + 𝑢  

𝑢  ~ 𝑁(0, 𝜎 )  

Common Team RE Team level random effects with common RE distribution for flag   
   and tackle players. 
 

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒 + 𝑣  

𝑣  ~ 𝑁(0, 𝛿 )  

Separate Player RE Player level random effects with separate RE distributions for flag  
   and tackle players. 
     

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒 + 𝑢  

𝑢  ~ 𝑁(0, 𝜎 ), if team 𝑗 is flag 
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   𝑢  ~ 𝑁(0, 𝜎 ), if team 𝑗 is tackle.  

Separate Team RE Team level random effects with separate RE distributions for flag  
   and tackle players. 
  

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +   𝑣   

   𝑣  ~ 𝑁(0, 𝛿 ), if team 𝑗 is flag 

   𝑣  ~ 𝑁(0, 𝛿 ), if team 𝑗 is tackle  

Common Team  Player and Team level random effects with common RE distributions for  
and Player RE flag and tackle players. 
  

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒 + 𝑢 +  𝑣   

𝑢  ~ 𝑁(0, 𝜎 )  

𝑣  ~ 𝑁(0, 𝛿 )  

Separate Player RE Player level random effects with separate RE distributions  
by Age Division by age division. 
     

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒 + 𝑢  

   𝑢  ~ 𝑁(0, 𝜎 ), 𝑘 = 1,2,3,4,5,6,7,8  

𝑘 = Division   

Priors for the parameters of the models above were identical to those assumed for the model in 
equation [2] with the addition of the following assumed prior distribution for the variance of the 
team level random effects, 𝛿 ~ 𝑈(0,100). 

Estimated parameters of interest for the models considered in these analyses are presented in 
Table 3a while posterior predictive estimates are given in Tables 3b and 3c. Note that, comparing 
the Common Player RE model to models with only team level random effects, failure to include 
player level effects results in a substantial increase in the DIC and a tendency to underestimate 
the standard errors of the observed impact counts. Addition of team level effects to the Common 
Player RE model resulted in negligible improvement in fit as measured by the DIC. These results 
also indicate that assuming a common variance for the random effect distribution of tackle and 
flag players has little impact on both the estimates of interest and the posterior predictive checks 
when compared to more complex models based on assuming differing random effect 
distributions for flag and tackle players. Finally, assuming differing random effect distributions 
for each age division yields little evidence of a substantial improvement in model fit. 
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Table A3a. Estimated impact rates, rate ratios, probabilities of at least one impact per 
athletic event and Deviation Information Criteria (DIC) resulting from various 
assumptions on hierarchical player and team level random effects (RE). 

 

 
Model 

Impact Rate 
 (95% Credible Interval) 

Rate Ratio 
(95% 

Credible 
Interval) 

Probability ≥ 1 
Impact 

DIC 

Type of Football Type of Football 
Flag Tackle Flag Tackle 

No RE 1.08 
(0.99,1.18) 

14.88 
(14.81,14.95) 

13.74 
(12.66,14.96) 

0.66 
(0.63, 0.69) 

1.00 1.04E5 

Common Player 
RE* 

0.63 
(0.43,0.92) 

9.19 
(8.18,10.32) 

14.67 
(9.75,21.95) 

0.47 
(0.35,0.60) 

1.00 4694 

Common Team 
RE 

0.97 
(0.71,1.34) 

14.08 
(12.40,15.94) 

14.47 
(10.27,20.37) 

0.62 
(0.51,0.74) 

1.00 86160 

Separate Player 
RE 

0.65 
(0.45,0.92) 

9.20 
(8,18,10.35) 

14.11 
(9.87,20.87) 

0.48 
(0.36,0.60) 

1.00 4695 

Separate Team 
RE 

0.97 
(0.53,1.69) 

14.08 
(12.48,15.89) 

14.59 
(8.32,26.85) 

0.62 
(0.41,0.81) 

1.00 86160 

Common Team 
and Player RE 

0.97 
(0.70,1.36) 

14.06 
(12.47,15.94) 

14.44 
(10.14,20.53) 

0.62 
(0.50,0.74) 

1.00 86160 

Separate Player 
RE by Age 
Division 

 
0.76 

(0.50,1.08) 

 
9.80 

(8.79,11.02) 

 
12.90 

(8.91,20.11) 

 
0.53 

(0.39,0.66) 

 
1.00 

 
4693 

*Final model that was chosen. 

 
Table A3b. Median percentage of posterior predictive impact counts that exceed the 
observed impact counts by age division for models based on various assumptions on 
hierarchical player and team level random effects (RE). 
 
 

 
Model 

Type of Football 

Tackle Flag 

1 2 3 4 1 2 3 4 

No RE 60 48 53 49 38 56 82 67 

Common Player 
RE* 

54 50 53 52 50 50 65 50 

Common Team 
RE 

56 48 53 52 63 56 65 50 

Separate Player 
RE 

54 50 53 52 50 50 65 50 

Separate Team 
RE 

56 48 53 52 63 63 65 50 
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Common Team 
and Player RE 

56 48 53 52 63 56 65 50 

Separate Player 
RE by Division 

52 51 52 52 50 50 65 50 

*Final model that was chosen. 

 

Table A3c. Observed and median posterior predicted standard deviations of impact counts 
by age division based on various assumptions on hierarchical player and team level 
random effects (RE). 
  

 
Model 

Type of Football  
All Tackle Flag 

1 2 3 4 1 2 3 4 

Observed 302 276 281 275 16 11 9 6 288 

No RE 122 98 64 90 3 4 4 4 139 

Common Player 
RE* 

302 278 282 276 16 12 9 7 289 

Common Team 
RE 

162 162 142 109 4 6 3 3 175 

Separate Player 
RE 

302 278 282 276 16 12 8 7 289 

Separate Team 
RE 

160 161 141 108 5 5 3 2 175 

Common Team 
and Player RE 

162 162 142 109 4 6 3 3 175 

Separate Player 
RE by Division 

302 278 282 276 16 12 9 6 289 

*Final model that was chosen. 
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Comparison of Poisson Models with and without Age Division Effects 
 
 
The second set of model evaluation summaries reflect the potential effect of age division on the 
observed impact counts. Because the actual age of each player was not available in these data, 
we assigned the mid-point age associated with each players division as his age for this 
assessment.  In this section, a linear model for the midpoint age in each division and a 
categorical age effect model, separated by ages < 10 and > 10, are fit with age effect modeled 
separately for flag and tackle players. Coefficients for the parameters reflecting the effect of mid-
point age within division were modeled under the prior assumptions: 
 
 
   𝛽  ~ 𝑁(0,1000), and 
   𝛽  ~ 𝑁(0,1000). 
 
 
As above, estimates produced using the model in equation [2] are presented for comparison in 
each table and are highlighted and referred to as the Common Player RE model. 
 
Models considered in this section are: 
 

Name   Model 

Common Player RE  Player level random effects with common RE distribution for flag  

   and tackle players 

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +   𝑢   

   𝑢  ~ 𝑁(0, 𝜎 )  

Common Player RE Team level random effect with separate linear age models fit for 
Linear Age Effects flag and tackle players. 
  

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +   𝑢 + 

      𝛽 ∗  𝑎𝑔𝑒 +  𝛽 ∗ 𝑎𝑔𝑒 ∗ 𝑡𝑦𝑝𝑒  

   𝑢  ~ 𝑁(0, 𝜎 )   

𝑎𝑔𝑒 = mid-point age of player 𝑖𝑗′𝑠 Division 

Common Player RE Team level random effect with separate categorical age models fit                   
Categorical Age for flag and tackle players. 
  

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +   𝑢 + 
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      𝛽 ∗  𝑎𝑔𝑒 +  𝛽 ∗ 𝑎𝑔𝑒 ∗ 𝑡𝑦𝑝𝑒  

   𝑢  ~ 𝑁(0, 𝜎 )   

𝑎𝑔𝑒 = 1 if player 𝑖𝑗 > 10 years old, 0 otherwise. 

 

To enable comparison of estimates across ages, estimates were produced using both the linear 
and categorical age models for players aged 8 and 12 years old. 

The results of these assessments are summarized in Tables 4a, 4b and 4c. For tackle players, 
addition of age division effects had negligible impact on both the estimates of interest and the 
measures of model adequacy. Among flag players, the results presented in Table 4a indicate the 
potential for a decrease in impacts rates with increasing player age. However, due to the limited 
sample size among flag player older than 10 years, the similarity in DIC estimates for models 
containing and excluding age effects and the fact that the credible intervals for the estimated age 
parameters for flag players, 𝛽 , contained zero, we did not include age division in the final 
models for flag impact rates. 

 

Table A4a. Estimated impact rates at ages 8 and 12 and Deviation Information Criteria 
(DIC) produced using various assumptions on possible effects of player age. 
 

 
Model 

Impact Rate at 8 Years 
 (95% Credible Interval) 

Impact Rate at 12 Years 
 (95 % Credible Interval) 

 
DIC 

Type of Football Type of Football; 
Flag Tackle Flag Tackle 

 
Common Player 
RE*^ 

0.63 
(0.43,0.92) 

9.19 
(8.18,10.32) 

0.63 
(0.43,0.92) 

9.19 
(8.18,10.32) 

4694 

Common Player RE 
Linear Age Effect 

0.97 
(0.52,1.79) 

9.37 
(7.96,10.97) 

0.46 
(0.27,0.76) 

9.06 
(7.74,10.58) 

 
4693 

Common Player RE 
Categorical Age 
Effect1 

0.97 
(0.57,1.65) 

10.36 
(8.67,12.32) 

0.38 
(0.21,0.67) 

8.43 
(7.25,9.81) 

 

 
4693 

*Final model that was chosen. 
^RE = Random effects. 
1 Age Categories defined as midpoint division age < 10 and midpoint division age > 10 
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Table A4b. Median percentage of posterior predictive impacts that exceed observed impact 
counts by age division produced using various assumptions on possible effects of player 
age. 
  

 
Model 

Type of Football 

Tackle Flag 

1 2 3 4 1 2 3 4 

Common Player 
RE*^ 

54 50 53 52 50 50 65 50 

Common Player RE 
Linear Age Effect 

54 50 53 52 50 50 65 50 

Common Player RE 
Categorical Age 
Effect 

54 51 53 52 50 56 59 50 

*Final model that was chosen. 
^RE = Random effects. 
 

 

Table A4c. Observed and median posterior predictive standard deviations of impact counts 
by age division produced using various assumptions on possible effects of player age. 
  

 
Model 

Type of Football  
All Tackle Flag 

1 2 3 4 1 2 3 4 

Observed 302 276 281 275 16 11 9 6 288 

Common Player 
RE*^  

302 278 282 276 16 12 9 7 289 

Common Player RE 
Linear Age Effect 

302 278 282 276 16 12 9 7 289 

Common Player RE 
Categorical Age 
Effect 

302 278 282 276 16 12 9 7 289 

*Final model that was chosen. 
^RE = Random effects. 
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Comparison of Poisson and Negative Binomial Models 
 
In this section, the Poisson common player level random effects model is compared to models 
using a Negative Binomial assumption on impact counts both with and without player level 
random effects. DIC estimates for the Negative Binomial models are not available in the 
OpenBugs software that was used to fit these data (Lun et al., 2013). As a result, comparison of 
the effects of distributional assumptions on the resulting estimates of interest and posterior 
predictive assessment were used for model comparison. 

Models considered in this section are: 

Name   Model 

Common Player RE Player level random effects with common RE distribution for flag 

   and tackle players. Impacts assumed to be Poisson random variables. 

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +   𝑢   

   𝑢  ~ 𝑁(0, 𝜎 )  

NB No RE  No random effects. Impacts assumed to samples from a Negative  

Binomial distribution.   

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒   

NB Common    Player level random effects with common RE distribution for flag  

Player RE and tackle players. Impacts assumed to be samples from a Negative 
Binomial distribution. 

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +   𝑢   

   𝑢  ~ 𝑁(0, 𝜎 )  

 

The results of these comparison are presented in Tables 5a, 5b and 5c. Note that use of Negative 
Binomial assumption for the distribution of impact counts resulted in an increase in the estimated 
values of the impact rates when compared to those developed under a Poisson assumption. 
However, the posterior predictive standard deviations of the impact counts produced using the 
Negative Binomial model were substantially larger that the observed impact standard deviations. 
In addition, the results in Table 5b suggest that use of the Negative Binomial assumption resulted 
in posterior predicted impact count estimates that were not centered close to the observe values. 
As a result, the Poisson assumption for the likelihood of the impact counts, as given in equation 
[2], was retrained for production of final estimates. 

 
  



17 
 

Table A5a. Estimated impact rates, rate ratios and probabilities of at least one impact per  
athletic event produced using models based on either a Poisson or Negative Binomial 
assumption on the likelihood of the observed impact counts. 
 

 
Model 

Impact Rate  
(95% Credible Interval) 

 
Rate Ratio 

Probability ≥ 1 Impact 

Type of Football Type of Football 
Flag Tackle Flag Tackle 

 
Common Player 
RE*^ 

0.63 
(0.43,0.92

) 

9.19 
(8.18,10.32) 

14.67 
(9.75,21.95) 

0.47 
(0.35,0.60

) 

1.00 

 
NB No RE 

1.06 
(0.80,1.46

) 

14.90 
(13.62,16.33

) 

14.03 
(10.08,19.0) 

0.65 
(0.55,0.77

) 

1.00 

NB Common Player 
RE 

1.06 
(0.80,1.45

) 

14.89 
(13.60,16.30

) 

14.0 
(10.13,19.05) 

0.65 
(0.55,0.77

) 

1.00 

*Final model that was chosen. 
^RE = Random effects. 
 

 

 

Table A5b. Median percentage of posterior predictive impacts that exceed the observed 
impact counts by age division produced using models based on either a Poisson or      
Negative Binomial assumption on the likelihood of the observed impact counts. 
 

 
Model 

Type of Football 

Tackle Flag 

1 2 3 4 1 2 3 4 

Common Player 
RE*^ 

54 50 53 52 50 50 65 50 

NB No RE 52 42 49 45 39 44 71 50 

NB Common Player 
RE 

52 41 49 45 38 44 71 50 

*Final model that was chosen. 
^RE = Random effects. 
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Table A5c. Observed and median posterior predictive standard deviations of impact counts 
by age division produced using models based on either a Poisson or Negative Binomial    
assumption on the likelihood of the observed impact counts. 
  

 
Model 

Type of Football  
All Tackle Flag 

1 2 3 4 1 2 3 4 

Observed 302 276 281 275 16 11 9 6 288 

Common Player RE 
*^ 

302 278 282 276 16 12 9 7 289 

NB No RE 387 389 420 400 10 12 10 9 404 

NB Common Player 
RE 

388 390 419 402 10 12 10 9 405 

*Final model that was chosen. 
^RE = Random effects. 
 
 
 
  



19 
 

Effect of Imputing Missing Tackle Exposure for Impacts ≥ 10 g 
 

This section provides comparisons of estimates developed using an assumed value for each 
tackle player’s missing AE to those developed treating this information as missing data to be 
imputed in the Bayesian estimation process. Because DIC estimates are not generally appropriate 
for evaluation of missing data models (Lun et al., 2013), these estimates are not presented for 
these comparisons. In this case, however, the models were not evaluated with model selection in 
mind as much as with the goal of assessing the sensitivity of the estimates to possible 
implications of not observing the true event exposures among tackle players.  

The following models are evaluated in this section: 

Name   Imputation Model 

 

Common Player RE  Player level random effects with common RE distribution for flag  

   and tackle players. Missing AE set to count of AEs in which any player on  

team has at least one recorded impact 

ln 𝜆 = ln 𝑟𝑎𝑡𝑒 + ln(𝑟𝑟 ) ∗ 𝑡𝑦𝑝𝑒  +   𝑢    

    𝑢  ~ 𝑁(0, 𝜎 )  

Uniform    Player level random effects with common RE distribution for flag                                   

   and tackle players as in equation [2]. Tackle exposure imputed using a  

uniform distribution such that,     

𝐴𝐸  ~ 𝑈(𝑀𝑖𝑛 , 𝑀𝑎𝑥 ) , when team 𝑗 plays tackle 
      =  Observed 𝐴𝐸 , when team 𝑗 plays flag. 
 

    𝑀𝑖𝑛  = Number of AEs in which player 𝑖 had ≥ 1 impact. 

  𝑀𝑎𝑥  = Number of AEs in which any member of team 𝑗 has ≥ 1  
  impact 

 
A comparison of the estimates and positive predictive metrics for these models is presented in 
Tables 6a, 6b and 6c. Note that imputation of the missing AE values tended, as expected, to 
produce a larger impact rate estimates among tackle players that that obtained by fixing the 
missing exposures at a likely conservatively large values. As a result, one could interpret the 
estimates produced using the imputation as a range of uncertainty for the true tackle impact rate 
reflecting lack of knowledge concerning the exposure among tackle players. 
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Table A6a. Estimated impact rates, rate ratios and probabilities of at least one impact per    
athletic event produced using assumed fixed values for the missing counts of athletic 
exposures among tackle players and using imputed values for these missing data. 

  
Imputatio
n Model 

Impact Rate 
 (95% Credible Interval) 

 
Rate Ratio 

 
Probability ≥ 1 

Impact 
Type of Football Type of Football 

Flag Tackle Flag Tackle 
Common 
Player 
RE*^ 

0.63 
(0.43,0.91) 

9.19 
(8.18,10.32) 

14.67 
(9.75,21.95) 

0.47 
(0.35,0.60) 

1.00 

 
Uniform 

0.68 
(0.50,0.92) 

15.87 
(14.44,17.38) 

23.32 
(17.11,32.00) 

0.49 
(0.40,0.60) 

1.00 

*Final model that was chosen. 
^RE = Random effects. 
 
Table A6b. Median percentage of posterior predictive impacts that exceed observed impact     
counts by age division produced using assumed fixed values for the missing counts of 
athletic exposures among tackle players and using imputed values for these missing data. 

 
Imputation 

Model 

Type of Football 

Tackle Flag 

1 2 3 4 1 2 3 4 

Common 
Player RE*^ 

 
54 

 
50 

 
53 

 
52 

 
50 

 
50 

 
65 

 
50 

Uniform 54 51 53 52 50 50 71 50 

*Final model that was chosen. 
^RE = Random effects. 
 

Table A6c. Observed and median posterior predictive standard deviations of impact counts 
by age division produced using assumed fixed values for the missing counts of athletic 
exposures among tackle players and using imputed values for these missing data. 

  
Imputation 

Model 

Type of Football  
All 

Tackle Flag 

1 2 3 4 1 2 3 4 

Observed 302 276 281 275 16 11 9 6 288 

Common 
Player RE*^ 

 
302 

 
278 

 
282 

 
276 

 
16 

 
12 

 
9 

 
7 

 
289 

Uniform 302 278 282 276 16 12 8 7 289 

*Final model that was chosen. 
^RE = Random effects. 
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Comparison of Alternative Modeling Assumptions for Rates of Impacts ≥ 40 g 

The impact of assuming various combinations of player and team level random effects, similar to 
that used to assess the model for ≥ 10g impacts in equation [2], was also assessed for the Poisson 
component, 𝐼∗ , of the model for ≥ 40 g impacts given in equation [3]. The results of these 
assessments were similar to those reported for ≥10 g impacts and indicated use of a model 
containing player level random effects for the Poisson component of the mixture model given in 
equation [3] provided a good description of the observed data. However, due to the substantial 
number of zero impact counts, especially among flag players, assessment of potential age effects 
was not addressed using a modeling process. Graphical assessment of the observed impact count 
and rate data, however, indicated no discernable effect of age division on impacts ≥ 40 g. 

We did, however, evaluate alternative modeling assumptions for estimation of 𝑝  parameter. 
In particular, we evaluated the possibility that this variable may differ among flag and tackle 
players and the possibility that the probability of excess zero counts may differ by age division. 
Specifically, alternative models to that given in equation [3] evaluated were: 

Name   Model 

Common Player RE  Player level random effects with common RE distribution for flag  

   and tackle players as in equation [2]. 

ZIP1    Player level random effects with common RE distribution for flag  

   and tackle players as in equation [2]. For this model 𝑝  is assumed 

to be an unknown constant of equal value for both flag and tackle 

players. The prior distribution for 𝑝  was assumed to be 𝑈(0,1). Note 

 that the ZIP1 Model corresponds to the model in equation [3]. 

ZIP2    Player level random effects with common RE distribution for flag  

   and tackle players as in equation [2]. For this model, 𝑝  is assumed 

to differ between flag and tackle players and is estimated using the  

logistic model 

𝑙𝑜𝑔𝑖𝑡(𝑝 ) =  𝛽  +   𝛽 ∗ 𝑡𝑦𝑝𝑒 , 

𝑡𝑦𝑝𝑒  = 0 if team 𝑗 is flag and 1 if it is tackle. 

 ZIP3    Player level random effects with common RE distribution for flag  

   and tackle players as in equation [2]. For this model, 𝑝  is assumed 

to differ due to mid-point age of division and between flag and tackle  
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players. In this case, 𝑝  is estimated using the logistic model 

𝑙𝑜𝑔𝑖𝑡(𝑝 ) =  𝛽  +   𝛽 ∗  𝑡𝑦𝑝𝑒 +  𝛽  ∗  𝑎𝑔𝑒 +  𝛽 ∗  𝑎𝑔𝑒 ∗  𝑡𝑦𝑝𝑒    

𝑡𝑦𝑝𝑒  = 0 if team 𝑗 is flag and 1 if it is tackle, and 

𝑎𝑔𝑒 = 1 if player 𝑖𝑗 > 10 years old, 0 otherwise. 

Fitting the ZIP models relies on estimation of an unknown ordinal outcome, that is, the binary 
indicator of either a zero count or the assumed Poisson distribution. Due to reliance of the DIC 
estimates on approximate posterior Normality, DIC estimates are, again, not provided due to 
violation of this underlying assumption. 

Results associated with the ZIP1 mode, that is the model given in equation [3], are highlighted in 
the tables below. 

The estimates resulting from evaluation of alternative models for 𝑝  are presented in Table 7. 
Evaluation of these results indicates little impact of either type of football played or age division 
on the probability of having a zero-impact count. As a result, the ZIP1 model was used for 𝑝   
in equation [3] for estimation of rates for impacts ≥ 40 g. 

 
Table A7. Estimated rate of impacts ≥ 40 g for tackle and flag players, rate ratios, 
probabilities of at least one impact per athletic event and median posterior predictive count 
of zero impact counts produced using various models for the probability of excess zero  
impact counts. 

 
 
 

Model 

 
Impact Rate  

(95% Credible Interval) 

 
 

Rate Ratio 

 
Probability ≥ 1 Impact 

 
Median 

Estimated 
Zero 

Impacts 
Type of Football Type of Football Type of 

Football 
Flag Tackle Flag Tackle Flag 

(271) 
Tackle 

(22) 
Common 

Player 
RE^  

0.04  
(0.02,0.07) 

0.93  
(0.82,1.05) 

23.18  
(13.33,42.10) 

0.04  
(0.02,0.07) 

0.60 
(0.56,0.65) 

 
27 

 
14 

 
ZIP1*  

0.04  
(0.03,0.07) 

1.01  
(0.90,1.13) 

23.00  
(13.59,39.55) 

0.04  
(0.03,0.07) 

0.63  
(0.58,0.67) 

 
27 

 
24 

 
ZIP2  

0.04  
(0.03,0.07) 

1.01  
(0.90,1.14) 

23.23  
(13.72,40.18) 

0.04  
(0.03,0.07) 

0.63  
(0.58,0.67) 

 
27 

 
23 

ZIP3  
Age < 

10 
 

 
0.04  

(0.03,0.08) 
0.04  

 
1.02  

(0.90,1.15) 
0.98  

 
23.10  

(13.00,40.23) 
23.10  

 
0.04  

(0.03,0.08) 
0.04  

 
0.64  

(0.59,0.68) 
0.61  
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Age > 
10 

 

(0.02,0.07) (0.87,1.10) (13.54,42.35) (0.02,0.07) (0.57,0.65) 27 21 

^RE = Random effects. 
*Final model that was chosen. 
1 Bolded values within parentheses are the observed number of zero impact counts among tackle 
and flag players. 

 

Effect of Imputing Tackle Exposure for Impacts ≥ 40 g 
 

Missing AE values for tackle player were also imputed using the uniform model described above 
for ≥ 10 g impacts for impacts of 40 g magnitude or higher. The results of this imputation, along 
with a comparison to estimates produced using assumed fixed conservative values for AEs are 
presented in Table 8. 

 
Table A8. Estimated impact rates, rate ratios and probabilities of at least one impact of    
magnitude ≥ 40 g per athletic event produced using assumed fixed values for the missing 
counts of athletic exposures among tackle players and one produced using imputed values 
for these missing data. 
  

Imputatio
n Model 

Impact Rate 
 (95% Credible Interval) 

 
Rate Ratio 

 
Probability ≥ 1 Impact 

Flag Tackle Flag Tackle 
 
ZIP11* 

0.04  
(0.03,0.07) 

1.01  
(0.90,1.13) 

23.00  
(13.59,39.55) 

0.04  
(0.03,0.07) 

0.63  
(0.58,0.67) 

 
Uniform 

0.05  
(0,03, 0.08) 

1.61 
(1.44,1.80) 

33.06 
(20.28,55.07) 

0.05 
(0.03,0.08) 

0.79  
(0.75,0.82) 

 
1 No imputation was used in the ZIP1 model. As in the previous analyses, the missing AE values 
for each tackle  
  player was set to the number of AEs in which any member of that player’s team had a recorded 
impact.  
*Final model that was chosen. 

 

  



24 
 

Comparison of Alternative Modeling Assumptions for Linear Acceleration Measures 

 

Potential outliers for the observed LA measures were identified as observations with values 
exceeding a robust cutoff, 𝐶. This value for 𝐶 was derived separately for tackle and flag players 
and was set to the third quartile plus 2.5 time the interquartile range. Using this approach, nine 
LA values and three 95th percentile observed LA measures were identified as potential outliers. 
Sensitivity of the LA estimates produced using the model in equation [5] were examined when 
compared to estimates under an alternative, Normal, assumption for the likelihood as well as for 
the impact of inclusion and exclusion of the identified outliers. In addition, potential impacts of 
player age division were also examined as was the impact of inclusion of team level random 
effects in the model. Models including player-level random effects were not evaluated due to 
identifiability issues resulting from the inability to separate the estimated variance of the random 
effects from the estimated variance of the observations about the modeled mean.  

Letting, 𝑙𝑎  be the linear acceleration value of interest, median or 95th percentile, the models 
considered were: 

 

Name    Model 

Normal   Normal likelihood with no random effects. 

Outliers Included   𝑙𝑎   ~ 𝑁( 𝑢 , 𝜎 ) 

No Team RE   𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒   

    Excluded observations: 5 players with questionable impact 

counts. 

Normal   Normal likelihood with team-level random effects. 

Outliers Included  𝑙𝑎   ~ 𝑁( 𝑢 , 𝜎 ) 

Team RE   𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒 +  𝑣  ,  𝑣   ~  𝑁(0 , 𝛿  ). 

    Excluded observations: 5 players with questionable impact  

counts. 

Normal   Normal likelihood with no random effects 

Outliers Excluded  𝑙𝑎   ~ 𝑁( 𝑢 , 𝜎 ) 

No Team RE   𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒   

    Excluded observations: Identified LA outliers, 5 players with  
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questionable impact counts. 

Student’s t   Student’s t likelihood with team-level random effects.  

Outliers Included   𝑙𝑎  ~ 𝑡  𝜇  , 𝜎  , 𝑑𝑓  

Team RE   𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒 +  𝑣 ,  ,  𝑣   ~  𝑁(0 , 𝛿  ). 

    Excluded observations: 5 players with questionable impact 

counts. 

Student’s t   Student’s t likelihood with no random effects. Note, this is the  

Outliers Included  given in equation [4]. 

No Team RE   𝑙𝑎  ~ 𝑡  𝜇  , 𝜎  , 𝑑𝑓  

    𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒  

Excluded observations: 5 players with questionable impact 

counts. 

Student’s t   Student’s t likelihood with team-level random effects. 

Outliers Excluded  𝑙𝑎  ~ 𝑡  𝜇  , 𝜎  , 𝑑𝑓  

Team RE    𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒 +  𝑣 ,  ,  𝑣   ~  𝑁(0 , 𝛿  ). 

Excluded observations: Identified LA outliers, 5 players with  

questionable impact counts. 

Student’s t   Student’s t likelihood with team-level random effects. 

All Data    𝑙𝑎  ~ 𝑡  𝜇  , 𝜎  , 𝑑𝑓  

Team RE    𝜇  =   𝑙𝑎  +   𝑙𝑎_𝑑𝑖𝑓𝑓 ∗  𝑡𝑦𝑝𝑒 +  𝑣 ,  ,  𝑣   ~  𝑁(0 , 𝛿  ). 

Excluded observations: None 

The following prior assumptions were used for all models: 

 

𝑙𝑎   ~  𝑁(0, 1000 ), 

𝑙𝑎_𝑑𝑖𝑓𝑓   ~  𝑁(0, 1000 ), 

    1
𝜎   ~  𝐺𝑎𝑚𝑚𝑎(0.001, 0.001),  

𝛿 ~ 𝑈(0,100), and 
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𝑑𝑓 ~ 𝑈(2,100) . 

The results of these sensitivity assessments are provided in Tables 9a, for the median LA, and in 
Table 9b for the 95th percentile. Note that, for both outcomes, estimates for the average LA 
measures under the assumed Student’s t likelihood with the potential outliers included were close 
to those produced when the outliers were excluded. This result is indicative of the robustness of 
the approach to highly dispersed data. In addition, use of an assumed Normal likelihood for the 
LA measures resulted in a substantial increase in the DIC measure as compared to the fit 
produced using a Student’s t assumption. Recalling, that a lower DIC is, in general, indicative of 
a model in greater agreement with the data, this provides additional evidence for the adequacy of 
the Student’s t distributional assumption. Alternatively, while inclusion of the team level random 
effects did result in a lower DIC estimates, addition of these terms had virtually no impact in the 
estimates of the average LA measures. As a result, final estimates were developed using the less 
complex model without team level random effects. Finally, as shown in the last row of Tables 8a 
and 8b, exclusion of the 5 players with questionable impact counts had no effect on the resulting 
estimates of interest in the LA analyses. 
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Table A9a. Estimated average median linear acceleration (LA), increase in mean value due to playing tackle, probability that 
tackle measure exceeds that among flag players, degrees of freedom (df) and Deviance Information Criteria (DIC) under 
various modeling assumptions. 
 

^RE = random effect. 
*Final model that was chosen. 
 

 
 

Model 

Mean LA 
 (95% Credible Interval) 

 
 

Tackle Increase 
in LA 

 
 

Probability Tackle 
LA  

≥ Flag LA 
 

 
 

𝒅𝒇 

 
 

DIC Type of Football 

 
Flag 

 
Tackle 

Normal - Outliers Included 
No Team RE^  

18.76 
(16.48,21.08) 

18.73 
(18.30, 19.15) 

-0.04 
(-2.38,2.27) 

0.49  3134 

Normal - Outliers Included 
Team RE 

18.75 
(16.39,21.03) 

18.73 
(18.30,19.15) 

-0.03 
(-2.35,2.35) 

0.49  3134 

Normal - Outliers Excluded 
No Team RE 

17.43 
(16.17,18.71) 

18.37 
(18.18,18.57) 

0.94 
(-0.35,2.22) 

0.92  2308 

Student’s t - Outliers 
Included 
Team RE 

16.80 
(15.41,18.29) 

18.14 
(17.80,18.47) 

1.34 
(-0.17,2.76) 

0.96 3 
(2, 3) 

2411 

Student’s t - Outliers 
Included 
No Team RE* 

16.84 
(15.57,18.21) 

18.15 
(17.95,18.34) 

1.31 
(-0.08,2.59) 

0.97 3 
(2,4) 

2460 

Student’s t - Outliers 
Removed 
Team RE 

16.98 
(15.66,18.38) 

18.20 
(17.88,18.51) 

1.22 
(-0.20,2.58) 

0.95 6 
(4,14) 

2255 

Student’s t - All Data 

Team RE 
16.97 

(15.65, 
18.36) 

18.13 
(17.80,18.47) 

1.17 
(-0.27,2.52) 

0.95 3 
(2,4) 

2434 
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Table A9b. Estimated average 95th percentile linear acceleration (LA), increase in mean value due to playing tackle, 
probability that tackle measure exceeds that among flag players, degrees of freedom (df) and Deviance Information Criteria 
(DIC) under various modeling assumptions. 
 

 
 

Model 

Mean LA  
(95% Credible Interval) 

 
 

Tackle Increase 
in LA 

 
 

Probability Tackle 
LA ≥ Flag LA 

 

 
 

𝒅𝒇 

 
 

DIC Type of Football 
 

Flag 
 

Tackle 
Normal - Outliers Included 
No Team RE^ 

35.61 
(29.77,41.54) 

53.68 
(52.04,55.30) 

18.03 
(11.88,24.12) 

1.00  4505 

Normal - Outliers Included 
Team RE 

35.62 
(29.59,41.40) 

53.66 
(52.02,55.30) 

18.05 
(12.05,24.27) 

1.00  4505 

Normal - Outliers Excluded 
No Team RE 

33.85 
(29.14,38.61) 

53.27 
(51.74,54.83) 

19.42 
(14.47,24.40) 

1.00  4400 

Student’s t - Outliers 
Included 
Team RE 

33.26 
(26.26,40.45) 

51.99 
(49.53,54.42) 

18.75 
(11.11,26.11) 

1.00 5 
(3,7) 

4426 

Student’s t - Outliers 
Included 
No Team RE* 

33.51 
(28.23,39.08) 

52.55 
(51.06,54.09) 

19.06 
(13.38,24.45) 

1.00 6 
(4,12) 

4465 

Student’s t - Outliers 
Removed 
Team RE 

33.35 
(26.57,39.88) 

52.29 
(49.86,54.67) 

18.94 
(11.96,26.02) 

1.00 8 
(4,60) 

4365 

Student’s t - All Data 

Team Re 
33.92 

(26.64,41.16) 
51.98 

(49.52,54.42) 
18.06 

(10.49,25.78) 
1.00 4 

(2,7) 
4483 

^RE = random effect. 
*Final model that was chosen. 
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Comparison of Student’s t Likelihood models for linear acceleration with and without age  
division effects 
 
 
The model for LA given in equation [5] was modified to enable evaluation of the potential impact of 
player age division on the average LA measure estimates. As with the previous analyses, age was 
assigned to each player using the mid-point age of his age division. Again, a linear model for the 
midpoint age and a categorical age effect model, separated by ages < 10 and > 10, were fit with age 
effects modeled separately for flag and tackle players. As in earlier analyses, estimates are developed for 
ages 8 and 12 years to enable comparison of modeling assumptions. The Student’s t model with no age 
effects given in equations [4] and [5] is highlighted in the tables below. 
 
Estimates for the average LA measures and DIC are provided in Tables 10a and 10b. Note that there is 
little difference between the estimates when models did or did not include age effects under both the 
linear and categorical age models. In addition, the 95% credible intervals associated with the estimates 
have considerable overlap and the addition of age effects to the model had little impact on the estimated 
DIC. As a result, age effects were not included in the final models for estimating the average LA 
measures. 

 

Table A10a. Estimated median linear acceleration (LA) estimates and deviation information 
criteria (DIC) based on a Student’s t likelihood model with no age division effects and for       
models with linear and categorical age effects. 
 

 
Model 

Average LA at 8 Years 
 (95% Cred. Int.) 

Average LA at 12 Years 
 (95 % Cred. Int.) 

 
DIC 

Type of Football Type of Football 
Flag Tackle Flag Tackle 

 
Students’ t*1 

16.84 
(15.57,18.21) 

18.15 
(17.95,18.34) 

16.84 
(15.57,18.21) 

18.15 
(17.95,18.34) 

2460 

Student’s t 
Linear Age Effect 

15.99 
(14.15,17.98) 

18.39 
(18.11,18.67) 

17.55 
(15.91,19.44) 

19.94 
(17.42,22.70) 

 
2457 

Students’ t 
Categorical Age 
Effect2 

16.40 
(14.72,18.23) 

18.41 
(18.11,18.71) 

17.46 
(15.62,19.40) 

17.98 
(17.73,18.22) 

 
2459 

*Final model that was chosen. 
1 This model corresponds to that given in equations [4] and [5] 
2 Age categories defined as midpoint Division age < 10 and midpoint division age > 10 
  



30 
 

Table A10b. Estimated 95th percentile median linear acceleration (LA) estimates and deviation 
information criteria (DIC) based on a Student’s t likelihood model with no age        division effects 
and for models with linear and categorical age effects. 

 
 

Model 
Average LA at 8 Years 
 (95% Credible Interval) 

Average LA at 12 Years 
 (95 % Credible Interval) 

 
DIC 

Type of Football Type of Football 
Flag Tackle Flag Tackle 

 
Students’ t*1 

33.51 
(28.23,39.08) 

52.55 
(51.06,54.09) 

33.51 
(28.23,39.08) 

52.55 
(51.06,54.09) 

4465 

Student’s t 
Linear Age Effect 

36.32 
(27.01,45.62) 

53.09 
(50.95,55.22) 

31.53 
(24.36,38.65) 

48.28 
(35.67,60.81) 

 
4468 

Students’ t 
Categorical Age 
Effect2 

36.35 
(29.10,43.64) 

53.01 
(50.74,55.29) 

30.45 
(23.21,38.15) 

52.19 
(50.26,54.23) 

 
4467 

*Final model that was chosen. 
1 This model corresponds to that given in equations [4] and [5]. 
2 Age categories defined as midpoint Division age < 10 and midpoint division age > 10 
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