Overview of data to inform recommendations for booster doses of COVID-19 vaccines

Sara Oliver MD, MSPH ACIP Meeting June 23, 2021

cdc.gov/coronavirus

Policy questions:

Recommendations for booster doses of COVID-19 vaccines

Main policy question: Are booster doses of COVID-19 vaccines needed for those previously vaccinated with a primary series?

- Other questions:
 - Are booster doses needed for all persons or only in specific populations?
 - What is the optimal timing of booster doses after primary series?
 - Can these be given as a 'mixed dose' or do they need to be matched to a primary series?

<u>Note</u>: Decisions around strains for vaccine production likely to be made separately

Policy questions:

Recommendations for booster doses of COVID-19 vaccines

- Policy on booster doses coordinated with FDA for possible amendments to EUA, and ACIP for recommendations around use in specific populations
 - Both will require data on safety, immunogenicity and public health need
- "Booster dose": Vaccine doses after primary (1 or 2-dose) series that are needed to increase immunity after waning of initial immune response
 - Some individuals may not have mounted sufficient immune response after primary series and could need an additional dose to reach protective immunity

<u>Initial</u> doses of COVID-19 vaccines: Data to inform recommendations

LTCF residents

Persons ≥65 years

Persons 16–64 with high-risk medical conditions

Risk of COVID-19 complications

Risk of COVID-19 exposure

Health care personnel
Frontline Essential
Workers
Other Essential
Workers

Data to inform recommendations

Risk of COVID-19 complications

Risk of COVID-19 exposure

Risk of waning immunity

Data to inform recommendations

COVID-19 epidemiology Cases, hospitalizations,

deaths by age, setting, and medical condition

Risk of COVID-19 complications

Risk of COVID-19 exposure

Risk of waning immunity

Data to inform recommendations

Risk of COVID-19 complications

Risk of COVID-19 exposure

Duration of protection (antibodies, VE) after primary series

Ability to 'boost' with additional doses

Risk of waning immunity

Data to inform recommendations

Risk of COVID-19 complications

Risk of COVID-19 exposure

Vaccine effectiveness studies & assessment of vaccine breakthrough cases

Time since vaccination, age, setting, medical condition

Risk of waning immunity

Data to inform recommendations

Risk of COVID-19 complications

Risk of COVID-19 exposure

Correlates of Protection

Risk of waning immunity

Data to inform recommendations

Risk of COVID-19 complications

Risk of COVID-19 exposure

Risk of waning immunity

Risk of COVID-19 variants

Variant proportions, antibody response, and effectiveness for each variant and vaccine

Booster doses of COVID-19 vaccines: What do we know now?

COVID-19 vaccines administered

As of June 21, 2021

Total Vaccine Doses Administered: 318,576,441

% of Population With At Least 1 Dose:

≥**12** years of age:

62.5%

≥**18** years of age:

65.4%

≥**65** years of age:

87.3%

CDC. https://covid.cdc.gov/covid-data-tracker

Immunogenicity and antibody response

- Correlates of protection:
 - Immune response that allows prediction of the degree of protection against infection or disease
 - Work ongoing, no correlate established yet
- Duration of protection:
 - Monitor kinetics of antibody response, efficacy from early phase clinical trials
- Antibody response to variant-specific boosters

Robust correlation between vaccine efficacy against symptomatic disease and mean neutralizing antibody titer: Two studies

0.01 Rank corr $\rho = 0.79$ Variance explained by linear model: 77.5% N_{cases} A Pfizer Moderna efficacy 6 Gamaleya Vaccine 6 Novavax Risk ratio 70 0.3 Ox/AZ 60 0.4 50 0.5 20 8.0 0.2 8.0 SARS-CoV-2 neutralization (geometric mean titer ratio of vaccinees to convalescent patients)

Khoury et al. Nature Medicine (2021)

Earle et al. medRxiv preprint (Mar 20 2021)

Robust correlation between vaccine efficacy against symptomatic disease and mean neutralizing antibody titer: Two studies

- Suggests 54 IU/ml as correlate of protection (20% of mean convalescent titer)
- Threshold of protection against severe disease is lower (3% of mean convalescent titer), less affected by vaccine differences
- For variants, 5-fold lower neutralizing titer predicted to reduce efficacy from 95% to 77% in high efficacy vaccine, or from 70% to 32% for lower efficacy vaccine

Khoury et al. Nature Medicine (2021)

Predicted duration of immunity varies with initial vaccine efficacy

Initial efficacy may be useful in predicting time until boosting may be needed

- Vaccine starting with initial efficacy of 95% expected to maintain high efficacy (77%) after 250 days
- Vaccine starting with initial efficacy of 70% may result in drop to lower efficacy (33%) after 250 days
- Model assumes neutralization is major mechanism of protection

Khoury et al. Nature Medicine (2021)

Protection from severe infection predicted to persist longer than protection against mild infection

- After initial exponential decay, antibody half-lives generally stabilize to ≥10 years (linear decline)
- Depending on when transition occurs, proportion of individuals predicted to be protected against severe disease long-term, even without boosters, but may be susceptible to mild infection

Duration of immunity

- To date, antibody persistence demonstrated for up to 8 months after COVID-19 infection and up to 6 months after the 2nd mRNA vaccine dose
- Two studies, 6 months after receiving Moderna vaccine: Lower neutralizing titers & higher proportions (~50%) with undetectable titers against B.1.351 and P.1, compared with ancestral strain
 - Third modeling study makes similar conclusions
- Many studies have shown larger reductions in variant neutralization for convalescent sera than post-vaccine sera

Variant-specific booster

Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster

50 μg booster dose of mRNA-1273

50 μg booster dose of **mRNA-1273.351**

Two weeks after booster vaccination, titers against wild-type original strain, B.1.351 and P.1 variants increased to levels similar to or higher than peak titers after the primary series vaccinations

Variant-specific booster

Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster

50 μg booster dose of **mRNA-1273**

50 μg booster dose of **mRNA-1273.351**

Both vaccines demonstrated broad antibody boosting

Vaccine effectiveness

Overall "real world" vaccine effectiveness

- Efficacy/effectiveness against variants
- Effectiveness in specific populations

"Real world" vaccine effectiveness:

VE in <u>fully vaccinated</u> adult population

<u>Fully vaccinated against COVID-19</u>: ≥2 weeks after receipt of 2nd dose in a 2-dose series (Pfizer and Moderna) or ≥2 weeks after receipt of the single dose of the Janssen vaccine

Reduced antibody neutralization activity of vaccine sera relative to wildtype/dominant strain by study (n=48)

"Real world" vaccine effectiveness:

Studies to inform VE against variants of concern

Country	Vaccine	Dominant strain(s)	Fully vaccinated VE
Israel, Europe & U.K	Pfizer	B.1.1.7 (Alpha)	>85%
Canada	mRNA	B.1.1.7, P.1 (Alpha, Gamma)	79% (65%–88%)
Canada	mRNA	P.1/B.1.351 (Gamma/Beta)	88% (61%–96%)*
Qatar	Pfizer	B.1.1.7 (Alpha)	90% (86%–92%)*
		B.1.351 (Beta)	75% (71%–79%)*
South Africa	Janssen	B.1.351 (Beta)	52% (30%–67%)
			* Variant-specific VE

For B.1.351 (Beta), VE shown to be higher for prevention of severe disease

Vaccines & new variant of concern: Delta B.1.617.2

B.1.617.2-specific VE

- PCR-confirmed infection: Scotland, 2 doses Pfizer vaccine: 79% (vs. 92% for B.1.1.7)
- Symptomatic infection: England, 2 doses Pfizer vaccine: 88% (vs. 93% for B.1.1.7)
- Hospitalization: England, 2 doses Pfizer vaccine: 96% (similar to B.1.1.7)

B.1.617.2 antibody neutralization studies

4 studies, 2 doses Pfizer vaccine: 1.4, 2.5, 3, and 5.8-fold reduction (vs. wild-type)

Recent study in UK showing resurgence driven by replacement of B.1.1.7 with B.1.617.2, which has higher transmission rate, and infections in unvaccinated children and young adults

Booster doses of COVID-19 vaccines: Specific populations

- Need for booster doses of COVID-19 vaccines may only be demonstrated in some populations
- Populations to closely monitor:

Residents of long-term care facilities

Adults ≥65 years of age

Healthcare personnel

Immunocompromised persons

Two-dose mRNA vaccine effectiveness against SARS-CoV-2 infection in older adults (60+ years) & residents in long-term care facilities

"Real world" vaccine effectiveness

Healthcare personnel

VE against SARS-CoV-2 infection

Country	Vaccine	Fully vaccinated VE
United States	Pfizer	97%
	Moderna	99%
United States	Pfizer or Moderna	90%
United States	Pfizer	96%
United Kingdom	Pfizer or AstraZeneca	90%
United Kingdom	Pfizer	86%
United Kingdom (Scotland)	Pfizer or AstraZeneca	92%
Italy	Pfizer	95%
Denmark	Pfizer	90%

VE against symptomatic COVID-19

Country	Vaccine	Fully vaccinated VE
United States	Pfizer or Moderna	94%
United States	Pfizer	87%
Israel	Pfizer	97%
Israel	Pfizer	90%

People with clinically or therapeutically suppressed immunity

- Represent ≥2.7% of U.S. adults¹, including people living with rheumatologic conditions, organ transplants, HIV, leukemia, on cancer treatment, etc.
- More likely to get severely ill from COVID-19²
- Might be at higher risk for:
 - Prolonged SARS-CoV-2 infection³⁻⁷
 - Viral evolution during infection and treatment^{3,6,8-10}
 - Susceptibility to infection with SARS-CoV-2 variants¹²
- Might more frequently transmit SARS-CoV-2 to household contacts¹¹

References: (1) Harpaz et al. Prevalence of Immunosuppression Among US Adults, 2013. JAMA 2016. (2) Williamson et al. Factors associated with COVID-19-related death using

OpenSAFELY. Nature 2020. (3) Truong et al. Persistent SARS-CoV-2 infection and increasing viral variants in children and young adults with impaired humoral immunity. medRxiv 2021. (4) Hensley
et al. Intractable Coronavirus Disease 2019 (COVID-19) and Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Replication in a Chimeric Antigen Receptor-Modified T-Cell
Therapy Recipient: A Case Study. CID 2021. (5) Baang et al. Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Replication in an Immunocompromised Patient. JID 2021. (6) Choi et al.
Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. NEJM 2020. (7) Helleberg et al. Persistent COVID-19 in an immunocompromised patient temporarily responsive to two
courses of remdesivir therapy. JID 2020. (8) Clark et al. SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell 2021. (9) Kemp et al. SARSCoV-2 evolution during treatment of chronic infection. Nature 2021. (10) Khatamzas et al. Emergence of multiple SARS-CoV-2 mutations in an immunocompromised host. medRxiv 2021. (11)
Lewis et al. Household Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 in the United States. CID 2020. (12) Stengert et al. Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine inpatients on hemodialysis. medRxiv preprint 2021

Factors that may decrease vaccine response among immunocompromised populations

Older age

Primary immunodeficiency

Lower lymphocyte count*

Decreased kidney function

Immunosuppressive drugs**

High-dose corticosteroids

Current or recent (<6 mos) cancer treatment***

^{*} Including lower CD4 count for people living with HIV

^{**} Immunosuppressive drugs include methotrexate, mycophenolate, rituximab, infliximab, calcineurin-inhibitors

^{***} BTK inhibitors, anti-CD20 and anti-CD38 therapies, chemotherapy

mRNA vaccine effectiveness studies of COVID-19 infection among immunocompromised populations

- 71% effective against SARS-CoV-2 infection from 7-27 days after 2nd Pfizer dose among immunocompromised* people vs. 90% overall
 - 75% protection against symptomatic COVID-19 among immunosuppressed vs. 94% overall
 - Lower protection with increasing age group
- 80% effective against SARS-CoV-2 infection from 7 days after 2nd mRNA dose among people with inflammatory bowel disease on various immunosuppressive medications
 - One mRNA dose: 25% effective
 - No difference in effectiveness noted between Pfizer and Moderna

^{*}Immunocompromised conditions (e.g. recipients of hematopoietic cell or solid organs transplant, patients under immunosuppressive therapy, asplenia, and chronic renal failure: advanced kidney disease, dialysis, or nephrotic syndrome)

Percent antibody response after <u>two</u> mRNA vaccine doses by immunocompromised condition and study (n=40)

- Studies that compared response after 1st and 2nd dose demonstrated poor response to dose 1
- Antibody measurement and threshold levels vary by study protocol

Fold-reduction in antibody titers after <u>two</u> mRNA vaccine doses among immunocompromised populations vs. healthy controls

Evidence on providing 3rd COVID-19 vaccine dose to immunosuppressed people with suboptimal response

- Solid organ transplant recipients (n=30) who had suboptimal response to standard vaccination and subsequently received 3rd dose of vaccine
 - 57% received Pfizer series; 43% received Moderna series
 - 24 (80%) had negative antibody titers; 6 (20%) 'low-positive' after primary series
 - Received 3rd dose median of 67 days after 2nd dose: Janssen (n=15), Moderna (n=9), Pfizer (n=6)
 - After 3rd dose: 14 (47%) responded, including all low-positives; 16 (53%) remained negative
- People on hemodialysis (n=77, no COVID-19 history) vaccinated with up to 3 Pfizer doses
 - 64 (83%) seroconverted after 2nd dose
 - Of those negative after 2nd dose:
 - 5 (41%) of 12 people given 3rd dose seroconverted; 7 (59%) remained negative
- At least one clinical trial pending of 3rd dose of Moderna vaccine in transplant recipients

Considerations for specific populations

LTCF residents, adults ≥65 years of age

- Initial VE encouraging
- Vaccinated in early phase of COVID-19 vaccine roll-out
- Needed special considerations for other vaccines (boosters, higher-dose vaccines)

Healthcare personnel

- Vaccinated in early phase of COVID-19 vaccine roll-out
- Continued exposure to SARS-CoV-2, even as rates of community transmission improve

Immunocompromised persons

- Emerging literature suggesting a reduced antibody response after primary series
- By definition, population with an impaired immune response
- Concern for ability to mount an immune response after additional vaccine doses: consider if other prevention measures needed (monoclonal antibodies, etc.)

Mix-and-match:

Heterologous primary series and booster vaccine

- Recent studies from Europe have assessed heterologous primary series with Pfizer and Astra Zeneca with reassuring results
- Evidence is needed regarding the ability to use a different vaccine as a booster than what was used in the primary series
 - Studies specific to U.S. authorized vaccines

Borobia et. Al Reactogenicity and Immunogenicity of BNT162b2 in Subjects Having Received a First Dose of ChAdOx1s: Initial Results of a Randomized, Adaptive, Phase 2 Trial (CombiVacS). Available at SSRN: https://ssrn.com/abstract=3854768

Shaw et. al Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data, ISSN 0140-6736, https://doi.org/10.1016/S0140-6736(21)01115-6.

Hillus D, Schwarz T, Tober-Lau P, et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunization with ChAdOx1-nCoV19 and BNT162b2: a prospective cohort study. medRxiv; 2021. DOI: 10.1101/2021.05.19.21257334.

Schmidt et al. medRxiv preprint (June 15 2021): https://doi.org/10.1101/2021.06.13.21258859

Booster doses of COVID-19 vaccines: Timing of additional data

Upcoming studies:

NIH or manufacturer studies

Data from Phase I/II/III trials

- Monitor kinetics of antibody response, efficacy from early phase clinical trials
- BLA submission: Include efficacy for ~6 months

Heterologous boost

- Primary series followed by different boost vaccine
- NIH-sponsored study: 150 individuals, 12-20 weeks following initial series (any series)
 Results expected late summer 2021

Booster studies

- Moderna: Preliminary results for mRNA-1273 (50μg) published May 2021;
 Additional data on mRNA-1273 and other variants as boosters expected July-Sept 2021
- Pfizer: Data on BNT162b2 (30μg) and variant booster studies expected July-Sept 2021

Upcoming studies:CDC studies

Vaccine breakthrough cases

- Track breakthrough infections
- Monitor severity of disease and genomic sequence (specifically for variants of concern)

Vaccine effectiveness studies

- Continue to monitor VE studies over time:
 Stratify by age, time since vaccination, setting and medical condition
- Ability to track any waning VE could be impacted by declining incidence, changes in variant prevalence
- Over time, individuals who are vaccinated may become increasingly less comparable to the unvaccinated population

Vaccine effectiveness: Select upcoming studies

HEROES-RECOVER Cohort

- Following ~5,000 essential workers with weekly SARS-CoV-2 testing and quarterly serology
- To date, fully vaccinated populations followed for ~130 days (~4 months) post-vaccination
- Assess neutralizing antibodies 6-months post-vaccination

VISION VE Network

- Multi-state network of 8 integrated care systems and research centers; assess COVID-19 confirmed by molecular assays and vaccination documented by EHR and registries
- Network assesses waning effectiveness using test-negative VE design

IVY VE Network

- Collaborative of hospital-based investigators, through 18 tertiary academic medical centers in 16 states
- Plans to assess duration of protection by adapting prior methods used for influenza

Timeline for additional data

Summer:

July-September

Manufacturer data

Safety and Immunogenicity of booster doses

Manufacturer data

Phase I/II/III follow-up

Mix-and-match studies

Heterologous prime-boost

Early Fall:

September-October

COVID-19 epi

Incidence of cases, hospitalizations, deaths

COVID-19 variants

Variant proportions, VE by variant

VE studies

VE by age, setting, time since vaccination

Breakthrough cases

Comparison of variants and clinical outcomes

Timeline for additional data

Summer:

July-September

Manufacturer data

Safety and Immunogenicity of booster doses

Manufacturer data

Phase I/II/III follow-up

Mix-and-match studies

Heterologous prime-boost

Early Fall:

September-October

COVID-19 epi

Incidence of cases, hospitalizations, deaths

COVID-19 variants

Variant proportions, VE by variant

VE studies

VE by age, setting, time since vaccination

Breakthrough cases

Comparison of variants and clinical outcomes

ACIP meetings

Continue to provide updates. Vote could occur whenever data support updating policy

Booster doses of COVID-19 vaccines:

Work Group interpretation

- Work Group felt that recommendation for booster doses would only occur after:
 - 1. Evidence of declining protection against illness, such as **declines in vaccine effectiveness**, not only waning antibody response
 - 2. An escape **variant** (variant of concern substantially impacting vaccine protection)
- No data to support recommendations for booster doses currently, but will continue to monitor
- Global vaccine availability should be considered in discussions as well

Questions for ACIP

- 1. What does ACIP feel would be needed to move forward with booster recommendations?
- 2. Is the risk of disease enough to warrant a recommendation for boosters, before additional data may be available?

Acknowledgements

- Nicole Reisman
- Heather Scobie
- Meredith McMorrow
- Lauri Hicks
- Stephen Hadler
- Gayle Langley
- Jack Gersten
- Julia Gargano
- Jessica MacNeil
- Danielle Moulia
- Mary Chamberland
- Eddie Shanley
- Hannah Rosenblum

- Vaccine Task Force
- Epi Task Force
- Respiratory Viruses Branch

References

References for Slide 22 (VE in General Adult Population)

- Andrejko, Kristin, et al. "Early evidence of COVID-19 vaccine effectiveness within the general population of California." medRxiv (2021).
- Chodick, Gabriel, et al. "The effectiveness of the TWO-DOSE BNT162b2 vaccine: analysis of real-world data." Clinical Infectious Diseases (2021).
- Chung, Hannah, et al. "Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe COVID-19 outcomes in Ontario, Canada." (2021).
- Corchado-Garcia, Juan, et al. "Real-world effectiveness of Ad26. COV2. S adenoviral vector vaccine for COVID-19." (2021).
- Dagan, Noa, et al. "BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting." New England Journal of Medicine 384.15 (2021): 1412-1423.
- Goldberg, Yair, et al. "Protection of previous SARS-CoV-2 infection is similar to that of BNT162b2 vaccine protection: A three-month nationwide experience from Israel." medRxiv (2021).
- Haas, Eric J., et al. "Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data." The Lancet 397.10287 (2021): 1819-1829.
- Heymann, Anthony David, et al. "BNT162b2 Vaccine Effectiveness in Preventing Asymptomatic Infection with SARS-CoV-2 Virus: A Nationwide Historical Cohort Study." Available at SSRN 3796868 (2021).
- Martínez-Baz, Iván, et al. "Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection and hospitalisation, Navarre, Spain, January to April 2021." Eurosurveillance 26.21 (2021): 2100438.
- Pawlowski, Colin, et al. "FDA-authorized COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system." MedRxiv (2021).
- Pritchard, Emma, et al. "Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom." Nature Medicine (2021): 1-9.
- Tande, Aaron J., et al. "Impact of the COVID-19 vaccine on asymptomatic infection among patients undergoing pre-procedural COVID-19 molecular screening." Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America (2021).

References for Slide 27 (VE in Older Adults)

- Aran, Dvir. "Estimating real-world COVID-19 vaccine effectiveness in Israel using aggregated counts." medRxiv (2021).
- Cabezas et al., Effects of BNT162b2 mRNA Vaccination on COVID-19 Disease, Hospitalisation and Mortality in Nursing Homes and Healthcare Workers: A Prospective Cohort Study Including 28,594 Nursing Home Residents, 26,238 Nursing Home Staff, and 61,951 Healthcare Workers in Catalonia. Available at SSRN: https://ssrn.com/abstract=3815682 or http://dx.doi.org/10.2139/ssrn.3815682
- Cavanaugh AM, Fortier S, Lewis P, et al. COVID-19 Outbreak Associated with a SARS-CoV-2 R.1 Lineage Variant in a Skilled Nursing Facility After Vaccination Program Kentucky, March 2021. MMWR Morb Mortal Wkly Rep 2021;70:639-643.
 DOI: http://dx.doi.org/10.15585/mmwr.mm7017e2external icon
- Dagan, Noa, et al. "BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting." New England Journal of Medicine 384.15 (2021): 1412-1423.
- Emborg, Hanne-Dorthe, et al. "Vaccine effectiveness of the BNT162b2 mRNA COVID-19 vaccine against RT-PCR confirmed SARS-CoV-2 infections, hospitalisations and mortality in prioritised risk groups." medRxiv (2021).
- Lopez-Bernal JL, Andrews N, Gower C, et al. Early effectiveness of COVID-19 vaccination with BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on symptomatic disease, hospitalisations and mortality in older adults in England. medRxiv; 2021. DOI: 10.1101/2021.03.01.21252652.
- Mason, Thomas FD, et al. "Effects of BNT162b2 mRNA vaccine on Covid-19 infection and hospitalisation among older people: matched case control study for England." medRxiv (2021).
- Moustsen-Helms, Ida Rask, et al. "Vaccine effectiveness after 1st and 2nd dose of the BNT162b2 mRNA Covid-19 Vaccine in long-term care facility residents and healthcare workers—a Danish cohort study." MedRxiv (2021).
- Public Health of England COVID-19 vaccine surveillance report Week 20 <u>COVID-19 vaccine surveillance report week 20</u> (publishing.service.gov.uk)

References for Slides 32 & 33 (Immunocompromised Populations) [1]

- Anand, Shuchi, et al. "Antibody Response to COVID-19 vaccination in Patients Receiving Dialysis." Journal of the American Society of Nephrology (2021).
- Attias, Philippe, et al. "Antibody response to BNT162b2 vaccine in maintenance hemodialysis patients." Kidney international (2021).
- Benotmane, Ilies, et al. "Low immunization rates among kidney transplant recipients who received 2 doses of the mRNA-1273 SARS-CoV-2 vaccine." Kidney international 99.6 (2021): 1498-1500.
- Boyarsky, Brian J., et al. "Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients." Jama (2021).
- Boyarsky, Brian J., et al. "Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients." Jama 325.17 (2021): 1784-1786.
- Chavarot, Nathalie, et al. "Poor Anti-SARS-CoV-2 Humoral and T-cell Responses After 2 Injections of mRNA Vaccine in Kidney Transplant Recipients Treated with Belatacept." Transplantation (2021).
- Deepak, Parakkal, et al. "Glucocorticoids and B Cell Depleting Agents Substantially Impair Immunogenicity of mRNA Vaccines to SARS-CoV-2." medRxiv (2021).
- Diefenbach C, Caro J, Koide A, et al. Impaired Humoral Immunity to SARS-CoV-2 Vaccination in Non-Hodgkin Lymphoma and CLL Patients. medRxiv; 2021. DOI: 10.1101/2021.06.02.21257804.
- Geisen, Ulf M., et al. "Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort." Annals of the rheumatic diseases (2021).
- Grupper, Ayelet, et al. "Reduced humoral response to mRNA SARS-Cov-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus." American Journal of Transplantation (2021).
- Haberman, Rebecca H., et al. "Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease." Annals of the Rheumatic Diseases (2021).
- Harpaz R, Dahl RM, Dooling KL. Prevalence of Immunosuppression Among US Adults, 2013. JAMA. 2016;316(23):2547–2548. doi:10.1001/jama.2016.16477
- Herishanu, Yair, et al. "Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia." Blood (2021)
- Itzhaki Ben Zadok, O., Shaul, A.A., Ben-Avraham, B., Yaari, V., Ben Zvi, H., Shostak, Y., Pertzov, B., Eliakim-Raz, N., Abed, G., Abuhazira, M., Barac, Y.D., Mats, I., Kramer, M.R., Aravot, D., Kornowski, R. and Ben-Gal, T. (2021), Immunogenicity of the BNT162b2 mRNA vaccine in heart transplant recipients a prospective cohort study. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2199
- J. Barrière, E. Chamorey, Z. Adjtoutah, O. Castelnau, A. Mahamat, S. Marco, E. Petit, A. Leysalle, V. Raimondi, M. Carles, Impaired immunogenicity of BNT162b2 anti-SARS-CoV-2 vaccine in patients treated for solid tumors, Annals of Oncology, 2021, ISSN 0923-7534, https://doi.org/10.1016/j.annonc.2021.04.019.
 (https://www.sciencedirect.com/science/article/pii/S0923753421011832)
- Jahn M, Korth J, Dorsch O, Anastasiou OE, Sorge-Hädicke B, Tyczynski B, Gäckler A, Witzke O, Dittmer U, Dolff S, Wilde B, Kribben A. Humoral Response to SARS-CoV-2-Vaccination with BNT162b2 (Pfizer-BioNTech) in Patients on Hemodialysis. Vaccines. 2021; 9(4):360. https://doi.org/10.3390/vaccines9040360

References for Slides 32 & 33 (Immunocompromised Populations) [2]

- Kennedy, Nicholas A., et al. "Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD." Gut (2021).
- Korth, Johannes, et al. "Impaired humoral response in renal transplant recipients to SARS-CoV-2 vaccination with BNT162b2 (Pfizer-BioNTech)." Viruses 13.5 (2021): 756.
- Lacson, Eduardo, et al. "Immunogenicity of SARS-CoV-2 Vaccine in Dialysis." medRxiv (2021).
- Liane Rabinowich, Ayelet Grupper, Roni Baruch, Merav Ben-Yehoyada, Tami Halperin, Dan Turner, Eugene Katchman, Sharon Levi, Inbal Houri, Nir Lubezky, Oren Shibolet, Helena Katchman, Low immunogenicity to SARS-CoV-2 vaccination among liver transplant recipients, Journal of Hepatology, 2021, ISSN 0168-8278, https://doi.org/10.1016/j.jhep.2021.04.020.
- Luc Frantzen, Guilhem Cavaillé, Sandrine Thibeaut, Yohan El-Haik, Efficacy of the BNT162b2 mRNA COVID-19 vaccine in a haemodialysis cohort, Nephrology Dialysis Transplantation, 2021;, gfab165, https://doi.org/10.1093/ndt/gfab165
- Marinaki, S., Adamopoulos, S., Degiannis, D., Roussos, S., Pavlopoulou, I.D., Hatzakis, A. and Boletis, I.N. (2021), Immunogenicity of SARS-CoV-2 BNT162b2 vaccine in solid organ transplant recipients. Am J Transplant. https://doi.org/10.1111/ajt.16607
- Marion, Olivier, et al. "Safety and Immunogenicity of Anti–SARS-CoV-2 Messenger RNA Vaccines in Recipients of Solid Organ Transplants." Annals of Internal Medicine (2021).
- Massarweh A, et. al Evaluation of Seropositivity Following BNT162b2 Messenger RNA Vaccination for SARS-CoV-2 in Patients Undergoing Treatment for Cancer. JAMA Oncol. 2021 May 28. doi: 10.1001/jamaoncol.2021.2155. Epub ahead of print. PMID: 34047765.
- Miele, M., Busà, R., Russelli, G., Sorrentino, M.C., Di Bella, M., Timoneri, F., Mularoni, A., Panarello, G., Vitulo, P., Conaldi, P.G. and Bulati, M. (2021), Impaired anti-SARS-CoV-2 Humoral and Cellular Immune Response induced by Pfizer-BioNTech BNT162b2 mRNA Vaccine in Solid Organ Transplanted Patients. American Journal of Transplantation. Accepted Author Manuscript. https://doi.org/10.1111/ajt.16702
- Monin, Leticia, et al. "Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study." The Lancet Oncology (2021).
- Monin, Leticia, et al. "Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study." The Lancet Oncology (2021).
- Mounzer Agha, et.al Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients medRxiv 2021.04.06.21254949; doi: https://doi.org/10.1101/2021.04.06.21254949
- Nathalie Longlune, Marie Béatrice Nogier, Marcel Miedougé, Charlotte Gabilan, Charles Cartou, Bruno Seigneuric, Arnaud Del Bello, Olivier Marion, Stanislas Faguer,
 Jacques Izopet, Nassim Kamar, High immunogenicity of a messenger RNA based vaccine against SARS-CoV-2 in chronic dialysis patients, Nephrology Dialysis
 Transplantation, 2021;, gfab193, https://doi.org/10.1093/ndt/gfab193

References for Slides 32 & 33 (Immunocompromised Populations) [3]

- Parry, Helen Marie, et al. "Antibody responses after first and second Covid-19 vaccination in patients with chronic lymphocytic leukaemia." (2021).
- Peled, Yael, et al. "BNT162b2 vaccination in heart transplant recipients: clinical experience and antibody response." The Journal of Heart and Lung Transplantation (2021).
- Pimpinelli, F., Marchesi, F., Piaggio, G. et al. Fifth-week immunogenicity and safety of anti-SARS-CoV-2 BNT162b2 vaccine in patients with multiple myeloma and myeloproliferative malignancies on active treatment: preliminary data from a single institution. J Hematol Oncol 14, 81 (2021). https://doi.org/10.1186/s13045-021-01090-6
- Rabinowich, et al. Low immunogenicity to SARS-CoV-2 vaccination among liver transplant recipients, Journal of Hepatology, 2021, ISSN 0168-8278, https://doi.org/10.1016/j.jhep.2021.04.020.
- Roeker, Lindsey E., et al. "COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia." Leukemia (2021): 1-3.
- Rozen-Zvi, Benaya, et al. "Antibody response to mRNA SARS-CoV-2 vaccine among kidney transplant recipients—Prospective cohort study." Clinical Microbiology and Infection (2021).
- Sattler, Arne, et al. "Impaired Humoral and Cellular Immunity after SARS-CoV2 BNT162b2 (Tozinameran) Prime-Boost Vaccination in Kidney Transplant Recipients." medRxiv (2021).
- Shostak, Yael, et al. "Early humoral response among lung transplant recipients vaccinated with BNT162b2 vaccine." The Lancet Respiratory Medicine 9.6 (2021): e52-e53.
- Shroff, Rachna T., et al. "Immune Responses to COVID-19 mRNA Vaccines in Patients with Solid Tumors on Active, Immunosuppressive Cancer Therapy." medRxiv (2021).
- Simon, Benedikt, et al. "Hemodialysis patients show a highly diminished antibody response after COVID-19 mRNA vaccination compared to healthy controls." MedRxiv (2021).
- Speer, Claudius, et al. "Early Humoral Responses of Hemodialysis Patients after COVID-19 Vaccination with BNT162b2." Clinical Journal of the American Society of Nephrology (2021).
- Strengert, Monika, et al. "Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on hemodialysis." medRxiv (2021).
- Yanay, Noa Berar, et al. "Experience with SARS-CoV-2 BNT162b2 mRNA vaccine in dialysis patients." Kidney international 99.6 (2021): 1496-1498.
- Yau, Kevin, et al. "The Humoral Response to the BNT162b2 Vaccine in Hemodialysis Patients." medRxiv (2021).

References for slide 23 (variant neutralization) [1]

- 1. Alenquer M FF, Lousa D, et al. Amino acids 484 and 494 of SARS-CoV-2 spike are hotspots of immune evasion affecting antibody but not ACE2 binding. bioRxiv. 2021;https://www.biorxiv.org/content/10.1101/2021.04.22.441007v2.
- 2. Anichini, G.; Terrosi, C.; Gori Savellini, G. et al. Neutralizing Antibody Response of Vaccinees to SARS-CoV-2 Variants. Vaccines 2021,9, 517. https://doi.org/10.3390/vaccines9050517
- 3. Annavajhala MK, Mohri H, Zucker JE, Sheng Z, Wang P, Gomez-Simmonds A, et al. A Novel SARS-CoV-2 Variant of Concern, B.1.526, Identified in New York. medRxiv. 2021; https://www.ncbi.nlm.nih.gov/pubmed/33655278.
- 4. Bates T LH, Lyski ZL, et al. Neutralization of SARS-CoV-2 variants by convalescent and vaccinated serum. medRxiv.2021; https://www.medrxiv.org/content/10.1101/2021.04.04.21254881v1.
- 5. Becker M DA, Junker D, et al. Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. medRxiv. 2021; https://doi.org/10.1101/2021.03.08.21252958.
- 6. Caniels et al. Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and 1 vaccination. medRxiv preprint 2021: https://doi.org/10.1101/2021.05.26.21257441
- 7. Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021.
- 8. Collier DA, De Marco A, Ferreira I, Meng B, Datir R, Walls AC, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021.
- 9. Dejnirattisai W, Zhou D, Supasa P, Liu C, Mentzer AJ, Ginn HM, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 2021.
- 10. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell. 2021.
- 11. Edara VV, Hudson WH, Xie X, Ahmed R, Suthar MS. Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination. JAMA. 2021.
- 12. Edara VV, Norwood C, Floyd K, et al. Reduced binding and neutralization of infection- and vaccine-induced antibodies to the B.1.351 (South African) SARS-CoV-2 variant. bioRxiv preprint 2021; https://doi.org/10.1101/2021.02.20.432046
- 13. Edara VV LL, Sahoo MK, et al. Infection and vaccine-induced neutralizing antibody responses to the SARS-CoV-2 B.1.617.1 variant. bioRxiv. 2021;https://www.biorxiv.org/content/10.1101/2021.05.09.443299v1.
- 14. Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 2021;397(10282):1351-62.
- 15. Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021.
- 16. Geers D, Shamier MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Science Immunology 2021: https://immunology.sciencemag.org/content/6/59/eabj1750
- Gonzalez C. Saade C BA, et al. Live virus neutralisation testing in convalescent patients and subjects vaccinated against 19A, 20B, 20I/501Y.V1 and 20H/501Y.V2 isolates of SARS-CoV-2. medRxiv. 2021;https://www.medrxiv.org/content/10.1101/2021.05.11.21256578v1.full.pdf.
- Hoffmann M H-WH, Kruger N, et al. SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination. bioRxiv. 2021; https://www.biorxiv.org/content/10.1101/2021.05.04.442663v1.
- 19. Hoffmann M, Arora P, Gross R, Seidel A, Hornich BF, Hahn AS, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell. 2021;184(9):2384-93 e12.

References for slide 23 (variant neutralization) [2]

- 20. Leier HC BT, Lyski ZL, et al. Previously infected vaccinees broadly neutralize SARS-CoV-2 variants. medRxiv. 2021; https://www.medrxiv.org/content/10.1101/2021.04.25.21256049v1.
- 21. Lilleri D VI, Bergami F, et al. SARS-CoV-2 mRNA vaccine BNT162b2 elicited a robust humoral and cellular response against SARS-CoV-2 variants. Research Square. 2021;https://www.researchsquare.com/article/rs-396284/v1.
- 22. Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA, et al. Neutralizing Activity of BNT162b2-Elicited Serum. N Engl J Med. 2021.
- 23. Liu Y, Liu J, Xia H, Zhang X, Zou J, Fontes-Garfias CR, et al. BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants. N Engl J Med. 2021.
- 24. Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell, 2021; https://doi.org/10.1016/j.cell.2021.06.020.
- 25. Liu J, et al. Correlation of vaccine-elicited antibody levels and neutralizing activities against SARS-CoV-2 and its variants. bioRxiv preprint 2021: https://doi.org/10.1101/2021.05.31.445871
- 26. Liu, J., Liu, Y., Xia, H. et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature (2021). https://doi.org/10.1038/s41586-021-03693-y
- 27. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021.
- 28. Marot S MI, Jary A, et al. Neutralization heterogeneity of United Kingdom and South-African SARS-CoV-2 variants in BNT162b2-vaccinated or convalescent COVID-19 healthcare workers. bioRxiv. 2021; https://doi.org/10.1101/2021.03.05.434089.
- 29. McCallum M BJ, De Marco A, et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv. 2021; https://www.biorxiv.org/content/10.1101/2021.03.31.437925v1.
- 30. Moore et al. Neutralizing antibodies elicited by the Ad26.COV2.S COVID-19 vaccine show reduced activity against 501Y.V2 (B.1.351), despite protection against severe disease by this variant. bioRxiv preprint 2021: https://doi.org/10.1101/2021.06.09.447722
- 31. Muik A, Wallisch AK, Sanger B, Swanson KA, Muhl J, Chen W, et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science. 2021;371(6534):1152-3.
- Planas D, Bruel T, Grzelak L, Guivel-Benhassine F, Staropoli I, Porrot F, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med. 2021;27(5):917-24.
- Planas D, et al. Reduced sensitivity of infectious SARS-CoV-2 variant B.1.617.2 to monoclonal antibodies and sera from convalescent and vaccinated individuals. bioRxiv preprint 2021: https://doi.org/10.1101/2021.05.26.445838
- 34. Shen X, Tang H, McDanal C, Wagh K, Fischer W, Theiler J, et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe. 2021.
- 35. Shen X, Tang H, Pajon R, Smith G, Glenn GM, Shi W, et al. Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351. N Engl J Med. 2021.
- 36. Skelly D HA, Gilbert-Jaramillo J, et al. Vaccine-induced immunity provides more robust heterotypic immunity than natural infection to emerging SARS-CoV-2 variants of concern. Research Square. 2021; https://www.researchsquare.com/article/rs-226857/v1.
- 37. Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science. 2021.
- 38. Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell. 2021.

References for slide 23 (variant neutralization) [3]

- Tada T, Dcosta BM, Samanovic-Golden M, Herati RS, Cornelius A, Mulligan MJ, et al. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv. 2021;https://www.ncbi.nlm.nih.gov/pubmed/33564768.
- 40. Tada T ZH, Dcosta BM, et al. The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. bioRxiv. 2021; https://www.biorxiv.org/content/10.1101/2021.05.14.444076v1.
- 41. Trinite B PE, Marfil S, et al. Previous SARS-CoV-2 infection increases B.1.1.7 cross-neutralization by vaccinated individuals. bioRxiv. 2021; https://doi.org/10.1101/2021.03.05.433800.
- 42. Wall EC, Wu M, Harvey R, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. The Lancet 397 (10292), 2021. https://doi.org/10.1016/S0140-6736(21)01290-3
- West AP WJ, Wang JC, et al. Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. bioRxiv. 2021;https://www.biorxiv.org/content/10.1101/2021.02.14.431043v3.
- 44. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7. Nature. 2021.
- 45. Wang P, Casner RG, Nair MS, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 2021; https://doi.org/10.1016/j.chom.2021.04.007
- 46. Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE, et al. Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine. N Engl J Med. 2021.
- 47. Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. 2021.
- 48. Zhou H DB, Samanovic M, et al. . B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies. bioRxiv. 2021;https://www.biorxiv.org/content/10.1101/2021.03.24.436620v1.full.pdf.

References in bold are not included in the most recent update of the CDC Science Brief: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html

For more information, contact CDC 1-800-CDC-INFO (232-4636)

TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

