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Supplementary Figures

Variant QC
[ Remove monomorphic variants
Variant quality filter (call rate > 98%)
Also drop poor Y SNPs (from sex check)

Duplicate sample concordance
- drop SNPs with any discordance between known duplicate
samples
- define duplicate samples as identical sample IDs and are inferred
to be MZ/Dup through IBD analysis

J

( Mendelian inconsistencies )
- remove SNPs with inconsistencies in known PO pairs and trios
- define “known PO pairs and trios” as those where pedigree
relationships match relationships inferred by IBD analysis
J

Sample QC

Relaxed sample quality filter (call rate > 80%) ]
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Preliminary sex QC
Use X chromosome heterozygosity and Y SNP missingness to:
- Flag possible sex anomalies (X0, XXY, mosaics)
\ Flag inconsistences as possible sample swaps or mislabeled sex )
( Sample Relatedness Analysis N

Use IBD analysis (KING) and preliminary sex QC to:

identify duplicates (for removal from downstream analysis and to use in SNP QC)
identify sample swaps resulting in pedigree and sex inconsistencies and fix them
in the pedigree

identify samples for removal due to inexplicable pedigree or sex inconsistency,
unexpected relatedness between families J
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Final sex QC
Correct remaining sex inconsistencies
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[ FINAL VARIANT SET ]

Stringent sample quality filter (call rate > 98%) ]
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Supplementary Figure 1: Sample and variant quality control pipeline prior to imputation. See

Online Methods and code repository (https://github.com/ccrobertson/t1d-immunochip-2020) for

more details.
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Supplementary Figure 2: Population-structure in the analysis cohort. Study participants were

clustered using k-means clustering (Online Methods), generating five ancestry groups: African

Admixed (AFR), East Asian (EAS), European (EUR), Finnish (FIN), and Other Admixed

(AMR). Two plots are shown for each ancestry group, one with the 1000 Genomes Project data

on top (left), the other with the study participants on top (right). Study participants, black; 1000

Genomes participants, colored by super population. 1000G_ AFR=African super population,

AMR=Admixed American super population, EAS=East Asian super population,
EUR=European, SAS=South Asian.
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Supplementary Figure 3: Principal component analysis for cases (red) and controls (turquoise)
for each ancestry group. Cases are plotted on top (left) or bottom (middle). Scree plots (right)
suggest that linear models for genetic association include up to five principal components as

covariates.
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Supplementary Figure 4: Genotype accuracy for variants in ImmunoChip regions based on a
subset of 2,147 participants with available whole genome sequence (WGS) data. “Imputation R-
squared” is estimated imputation quality returned by the imputation software Minimac4. “True
R-squared” is the Pearson correlation between genotypes obtained through imputation to the
TOPMed reference panel versus WGS. Among variants with Imputation R-squared > 0.8 (right

of solid vertical line), more than 90% have True R-squared > 0.5 in all three ancestry groups.
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Supplementary Figure 5: Imputation coverage of ImmunoChip regions across a spectrum of
imputation quality filtering thresholds and minor allele frequencies. Y-axis shows the proportion
of variants detected by whole genome sequence (WGS) data that were imputed using the
TOPMed (red) or 1000 Genomes Project Phase 3 (blue) reference panel. “Imputation R-squared”
is estimated imputation quality returned by the imputation software Minimac4. MAF, minor

allele frequency.
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Supplementary Figure 6: Quantile-quantile plots showing the expected chi-square association

statistics against the observed chi-square association statistics from the Phase II European

family-based analysis results compared to five randomly sampled European case-control cohorts

with equivalent statistical power to the family-based analysis.
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Supplementary Figure 7: Evidence supporting shared effects between T1D and 14 immune-
related diseases. 14 immune-related diseases are on the x-axis; T1D lead variants, and their
corresponding candidate genes, are indicated on the y-axis. A square indicates that the
corresponding disease has a genome-wide significant association in the region, with a lead
variant in moderate to high linkage disequilibrium (R-squared>0.5) with the lead T1D variant
from this study. The R-squared between lead variants is provided within the square. Red squares
indicate concordant direction of effect. Blue squares indicate discordant direction of effect. Grey
squares indicate that summary statistics for T1D association with the immune-related disease
lead variant was not available from this study. Data used to generate this plot were obtained

using the Open Targets Genetics API.
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Supplementary Figure 8: Top panel: Absolute odds ratios for the lead variant in each T1D-
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of the dashed line attained genome-wide significance (p < 5x10%). Bottom Panel: Variance
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Supplementary Figure 9: Enrichment of T1D credible variants in ATAC-seq peaks in each cell

type (red bars, stimulated; green bars, unstimulated), red dashed line represents the Bonferroni

significance threshold at the 5% level (n = 2,431 credible variants). (a) Enrichment analysis

based on SNP-matching (Online Methods; (b) Enrichment analysis based on GoShifter; (c)

comparison of enrichments based on SNP-matching and GoShifter.
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Supplementary Figure 10: Enrichment of T1D credible variants in differentially open ATAC-
seq peaks between stimulation conditions, defined from a consensus list of peaks (Online
Methods). Red bars show differentially open peaks in stimulated cells; green bars show
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Supplementary Figure 11: rs72928038 with ETS-1 antibody supershift Electrophoretic
Mobility Shift Assay (EMSA). Lane 1-4 and 9 contains the reference allele (G) of rs72928038
labeled probe. Lane 5-8 and 10 contains the alternative allele (A) of rs72928038 labeled probe.
Rabbit IgG was added to lane 3 and 7 as negative controls for the supershift assay. Lane 9 and 10
are negative controls. The ETS-1 supershift EMSA demonstrates an allele-specific supershift
with r$72928038 G allele, while a shift is not observed with the A allele probe. Specifically, in
lane 4, we see the appearance of a band that is not present in lanes to 1&3, which suggests ETS1
binding of the labeled probe containing the rs72928038 G allele. Meanwhile, we do not see any
differences in band patterns between lanes 8 and lanes 5&7, which suggests that there is no
ETS1 binding of the labeled probe containing the rs72928038 A allele. Likewise, we do not see

any new bands in lane 2 relative to lanes 1&3, or lane 6 relative to lanes 5&7, which suggests



that STAT1 does not bind the labeled probe for either rs72928038 allele. Experiments showing
allele-specific ETS1 binding were repeated 4 times. Experiments showing lack of STATI

binding were repeated 3 times.
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Supplementary Figure 12: Direction of eQTL effects among Priority Index target genes across
immune cell populations. For each of 16 target genes where eQTLs colocalize with T1D
association, the direction of effect and strength of colocalization is shown for each of 12 cell
contexts. Red and blue squares indicate the T1D risk allele is associated with increased or
decreased gene expression, respectively. Intensity of the color reflects the posterior probability
(PPagr) for colocalization between the eQTL and T1D association, such that darker rectangles

imply stronger evidence of a shared causal variant.



Supplementary Note

Section 1 — Imputation to TOPMed

Imputation to TOPMed and 1000 Genomes reference panels

Genotypes were imputed across the entirety of all autosomal chromosomes, with the NHLBI
Trans-Omics for Precision Medicine (TOPMed) Freeze 5 2* and 1000 Genomes phase 3 reference
panels using the Michigan Imputation Server, which applied Eagle version 2.4  for phasing and
Minimac4 for imputation®. For each reference panel, ImmunoChip variants were aligned to the
appropriate strands and reference alleles using available tools

(https://www.well.ox.ac.uk/~wrayner/tools/).

Benchmarking imputation accuracy and coverage
Whole genome sequencing (WGS) data were available in a subset of samples, including 1,411

AFR, 641 AMR, and 95 EUR subjects, through the NHGRI Centers for Common Disease

Genomics (CCDQG) (https://ccdg.rutgers.edu/). Samples were sequenced on the [llumina HiSeq X
at the McDonnell Genome Institute at Washington University in St. Louis. Sequence alignment
and variant calling was performed as outlined in the standardized CCDG pipeline ¢

(https://github.com/CCDG/Pipeline-Standardization/blob/master/PipelineStandard.md).

Accuracy and coverage of imputation was assessed using WGS in 1,411 AFR, 641 AMR, and 95
EUR subjects. Specifically, as a measure of imputation accuracy, for each single nucleotide
variants (SNV) we calculated the Pearson correlation coefficient and R-squared between
genotypes obtained through imputation versus WGS. To measure imputation coverage of
ImmunoChip regions, we calculated the proportion of SNVs with MAF >0.005 detected through

WGS that were included in the imputed variant set after quality filtering at a range of imputation



R-squared thresholds. Relative coverage of imputation based on TOPMed and 1000 Genomes
reference panels was assessed in the AFR and AMR groups, where we had adequate number of
samples with available WGS. After filtering for imputation R-squared >0.8, more than 99% of
imputed SNVs within ImmunoChip regions were concordant with WGS with true R-squared
>0.5 (Supplementary Figure 4). To quantify the coverage of ImmunoChip regions after
imputation, we calculated the proportion of SNVs detected in WGS that were imputed with high
confidence. Among 1,411 AFR and 641 AMR subjects, 92.3% and 87.6% of variants in
ImmunoChip regions detected in WGS with MAF > 0.005 were imputed with imputation R-
squared > 0.8, respectively (Supplementary Figure 5). Only variants within ImmunoChip
regions or regions with relatively high variant density, defined as more than 50 variants
genotyped in a 500kb region (Supplementary Tables 2 and 3), were included in the analysis,
since the imputation of variants outside these regions would be based on a small number of

genotyped variants only.

Imputed variant filtering

Since imputation quality and R-squared statistics are dependent on allele frequency and LD
patterns in the target population, we filtered imputed variants for ancestry-specific imputation
quality (R?2> 0.8; SNPTEST info score®’ > 0.8 in cases, controls or overall), MAF (> 0.005), and,
for family-based association analyses, Mendelian inconsistency rates (< 0.01 in informative trios
and parent-offspring pairs). In addition, variants with a difference in SNPTEST info score > 0.05
between cases and controls were removed since this could artificially generate an association that
is reflecting imputation differences rather than genuine differences in allele frequencies between

cases and controls. Finally, only imputed variants lying within the 188 “ImmunoChip regions”



(Supplementary Table 2) or in other densely genotyped regions outside of the ImmunoChip
regions defined above (Supplementary Table 3) were analyzed for association with T1D, since
genotyping outside these regions on the ImmunoChip is sparse and therefore imputed variant
calls less certain. However, all variants that were directly genotyped and passed QC on the

ImmunoChip were included in the association analysis.

Section 2 — Controlling for population stratification

Despite controlling for population stratification by analyzing major ancestry groups separately
and adjusting for within-ancestry principal components in each ancestry-specific case-control
analysis (Online Methods), the genomic inflation factors (4;.) from the complete meta-analysis
was 1.40. Since the ImmunoChip intentionally covers regions of the genome previously
associated with immune-mediated disease, A, for association with T1D across ImmunoChip
variants is a priori anticipated to be greater than one. However, it is important to differentiate
inflation due to enrichment of true biological association from inflation due to experimental
artifact, such as population stratification. Due to the non-uniform distribution of ImmunoChip
variants across the genome, LD-score regression (a common approach to determining sources of
inflated test statistics in GWAS) cannot be applied to this data set. Thus, to rule out population
stratification, we compared A;. from TDT analysis, which is robust to population stratification,
to A¢c from case-control analysis of comparable statistical power. Specifically, for each ancestry
group, we generated five randomly sampled case-control data sets, each containing one case and
one control for each trio, which results in equivalent statistical power (1). For example, in our

European ancestry cohort, there were 4,766 trios. Thus, we subsampled, out of 13,458 European



cases and 20,143 European controls, five data sets each containing 4,766 cases and 4,766
controls. After excluding the major histocompatibility complex (MHC), insulin (/NS) and protein
tyrosine phosphatase, non-receptor type 22 (PTPN22) regions, the A, for the European family-
based analysis was 1.44, while the average A from five randomly sampled case-control data
sets of equivalent power was 1.50 (Supplementary Figure 6). Similar results are seen when
only considering directly genotyped variants (Supplementary Table 6). Together, these data
suggest that the inflation in the association analysis cannot be explained by population
stratification in our study cohort. Thus, we believe the observed inflation in both case-control
and family-based analyses is most likely due to enrichment for true association signal in

ImmunoChip regions.

(1) Mcginnis, R., Shifman, S. & Darvasi, A. Power and Efficiency of the TDT and Case-

Control Design for Association Scans. Behav 32, 135-144 (2002).

Section 3 — Credible set enrichment in condition-specific accessible chromatin

Since many ATAC-seq peaks are present in both stimulated and unstimulated conditions, the
enrichment scores are similar across conditions and may be underpowered to distinguish
enrichment that is specific to a stimulated or unstimulated state. Therefore, for cell types with
data available from unstimulated and stimulated conditions, we defined a subset of peaks that
were significantly differentially accessible between the conditions (“condition-specific peaks”).
Specifically, for each of 24 cell types, examining only peaks in the consensus list of peaks from
ATAC-seq dataset GSE118189 (25 immune cell types), we defined peaks with significantly

increased accessibility (FDR < 0.01) after stimulation (“stimulation-specific peaks”) and peaks



with significantly decreased accessibility after stimulation (“unstimulated-specific peaks™) using
the R package DESeq2. Of 138,596 regions in the consensus peak set, Th17 cells had the highest
proportion of stimulation-specific peaks (15.3%), while effector-memory CD8* T cells had the
highest proportion of unstimulated-specific peaks (9.8%) (Supplementary Table 14). We tested
for enrichment of T1D credible variants in these condition-specific peak sets using our custom
SNP-matching enrichment procedure (Online Methods). T1D credible variants were enriched in
these condition-specific peaks in numerous cell types, with the largest enrichment in stimulation-
specific peaks from effector CD4+ T cells stimulated for 24 hours with anti-CD3/CD28 and
human IL-2 (Supplementary Figure 10). These results indicate that T1D credible variants may
contribute to islet autoimmunity, in part, by altering responses to T cell receptor signaling, co-

stimulation, and/or cytokine signaling.

Section 4 — Overview of GUESSFM fine-mapping procedure

Here, we briefly describe the GUESSFM fine-mapping procedure: The (nxm) genetic matrix X
at a locus, where n is the number of individuals and m is the number of variants, is pruned to
remove variants in high LD (r2=0.99), generating a pruned (nxp) matrix, Z, with p ‘tag’ variants.
Now the model space contains 27 possible models. A stochastic search is carried out across these
2 models, averaging over the other parameters (e.g. variant effect size), to obtain a selection of
models with high marginal posterior probabilities. This set of models is then expanded to include
models where the tag variant is replaced by each of the variants in high LD with it (which had
been removed during pruning prior to the stochastic search). For each model, an Approximate
Bayes Factor (ABF) is calculated by treating the binary outcome (T1D status) as linear and using

the linear regression Bayesian Information Criterion. The ABF for each model can be interpreted



as the support for the model relative to a null model with no genetic variants. To obtain the
posterior probability for each model, the ABF is multiplied by the prior, which we took in all
cases to be a binomial prior with 3/m expected variants included in the model, divided by the
normalizing factor, the sum of all tested model posterior probabilities. The marginal probability
for each SNP is taken as the sum of the posterior probabilities for all models in which it is

present.
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