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Abstract

In 2016, Centers for Disease Control and Prevention (CDC) established surveillance of pregnant
women with Zika virus infection and their infants in the U.S. states, territories, and freely
associated states. To identify cases of Zika-associated birth defects, subject matter experts review
data reported from medical records of completed pregnancies to identify findings that meet
surveillance case criteria (manual review). The volume of reported data increased over the course
of the Zika virus outbreak in the Americas, challenging the resources of the surveillance system to
conduct manual review. Machine learning was explored as a possible method for predicting case
status. Ensemble models (using machine learning algorithms including support vector machines,
logistic regression, random forests, A-nearest neighbors, gradient boosted trees, and decision trees)
were developed and trained using data collected from January 2016—October 2017. Models were
developed separately, on data from the U.S. states, non-Puerto Rico territories, and freely
associated states (referred to as the U.S. Zika Pregnancy and Infant Registry [USZPIR]) and data
from Puerto Rico (referred to as the Zika Active Pregnancy Surveillance System [ZAPSS]) due to
differences in data collection and storage methods. The machine learning models demonstrated
high sensitivity for identifying cases while potentially reducing volume of data for manual review
(USZPIR: 96% sensitivity, 25% reduction in review volume; ZAPSS: 97% sensitivity, 50%
reduction in review volume). Machine learning models show potential for identifying cases of
Zika-associated birth defects and for reducing volume of data for manual review, a potential
benefit in other public health emergency response settings.
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11 INTRODUCTION

In 2015, Zika virus emerged as a cause of serious defects of the brain and eye and has been
associated with neurodevelopmental abnormalities, such as seizures, joint contractures,
swallowing difficulties, vision impairments, and hearing loss in offspring of women with
Zika virus infection during pregnancy (Honein et al., 2017; Moore et al., 2017; Rasmussen,
Jamieson, Honein, & Petersen, 2016; Reynolds et al., 2017; Shapiro-Mendoza et al., 2017,
Rice et al., 2018). In the setting of a public health emergency response, Centers for Disease
Control and Prevention (CDC) collaborated with state, territorial, and local health
departments to establish a national surveillance system of women with laboratory evidence
of confirmed or possible Zika virus infection during pregnancy and their infants (Reynolds
etal., 2017; Shapiro-Mendoza et al., 2017). Over 7,400 pregnancies completed between
December 1, 2015-March 31, 2018 were monitored to better understand the effects of Zika
virus infection during pregnancy on women, infants, and children. About 5-10% of infants
of women with confirmed Zika virus infection during pregnancy were found to have Zika-
associated birth defects (Reynolds et al., 2017; Shapiro-Mendoza et al., 2017).

As part of surveillance, information was abstracted from medical records and reported by
U.S. states, territories, and freely associated states. A rule-based process was used to screen
data from completed pregnancies for possible abnormal findings. Each completed pregnancy
with possible abnormal findings was prioritized for review by subject matter experts at CDC
(manual review) to identify those completed pregnancies with findings that met surveillance
criteria for Zika-associated birth defects (cases) and to distinguish them from completed
pregnancies without these findings (non-cases; Reynolds et al., 2017; Shapiro-Mendoza et
al., 2017).

Manual review is considered a gold standard method for distinguishing cases from non-cases
(case status). This process involves consideration of many data points for each completed
pregnancy, including findings from infant physical examination, neuroimaging, hearing
screening, and eye examination. Manual review of each completed pregnancy with a
possible abnormality maximizes sensitivity for detecting cases at the expense of both time
and human resources for conducting the review. As the Zika virus outbreak in the Americas
progressed, the volume of data reported to CDC increased, challenging the resources of the
surveillance system for conducting manual review.

Automation of systematic surveillance processes by supervised machine learning (ML) and
natural language processing (NLP) methods might present an opportunity to conduct more

efficient manual review. ML/NLP methods create classification decisions based on patterns
derived from existing data, and these classification decisions can be automated and applied

to future data. ML has been proposed and explored in other clinical scenarios for predicting
therapeutic outcomes, identifying abnormalities in radiology, and identifying risk in chronic
disease (Kang, Schwartz, Flickinger, & Beriwal, 2015; Wall, Kosmicki, Deluca, Harstad, &
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Fusaro, 2012; Wei, Yang, Nishikawa, & Jiang, 2005). For surveillance, results of previous
manual reviews might be used to guide development of ML/NLP methods to predict case
status algorithmically, thereby augmenting the processes of screening and manual review,
reducing overall review volume, and potentially improving overall surveillance system
performance in a public health emergency setting (Lee et al., 2018; Xiong et al., 2018).

Using the results of manual review by subject matter experts as the gold standard, we
explored the use of ML/NLP processing and variable feature engineering methods for
predicting case status. We estimated the volume of non-cases predicted by ML/NLP methods
and the potential reduction in the volume of completed pregnancies undergoing manual
review.

METHODS

Figure 1 presents a basic flow chart of our methods approach to exploring a ML application
for the Zika Case Review Process

Data source

Pregnancies with laboratory evidence of confirmed or possible Zika virus infection were
followed to pregnancy completion and into early childhood through active surveillance
methods. Data on pregnancy, birth outcome, and findings from clinical evaluations of the
infant were abstracted using standardized methods from prenatal, birth hospitalization,
pediatrician, and specialty care medical records and reported to CDC. Data were reviewed to
identify cases meeting the CDC surveillance criteria of Zika-associated birth defects. A
trained reviewer scrutinized each completed pregnancy with data indicating a possible
abnormality (from rules-based process), and review results were discussed with a panel of
subject matter experts for final case classification.

Data collected from Puerto Rico was stored and analyzed separately due to differences in the
amount and format of data collected. Data collected from the U.S. states, non-Puerto Rico
territories, and freely associated states are referred to as the U.S. Zika Pregnancy and Infant
Registry (USZPIR) in this analysis, and data collected from Puerto Rico are referred to as
the Zika Active Pregnancy Surveillance System (ZAPSS).

Abstracted medical record data were included for 7,155 completed pregnancies (3,212 from
the USZPIR; 3,943 from ZAPSS) which were reported to CDC from January 1, 2016 to
October 31, 2017. Data from manual reviews completed by the time of this analysis were
included for model development (324 from USZPIR and 523 for ZAPPS); data for
remaining completed pregnancies were used for model validation exploration. Abstracted
data included both non-text variables, such as dates of events (e.g., date of maternal
symptoms, diagnosis, birth, and clinical evaluations), numerical values (e.g., head
circumference measurements), and categorical information for outcomes (e.g., pregnancy
outcome and birth defects), and open-text reporting fields (e.g., verbatim descriptions of
results from neuroimaging studies).
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All independent variables from USZPIR and ZAPSS were initially considered for model
development and testing. Variables were excluded from model development if they were not
used for case status determination. For example, infant date of birth, estimated date of
delivery, city of birth, and name of birth hospital did not provide useful information for
determining if a Zika-associated birth defect is present or absent in an individual case.
Included variables were standardized into binary and categorical variables. From USZPIR, a
total of 198 non-text variables and 19 open-text reporting fields were included for analysis.
From ZAPSS, 800 non-text variables and 142 open-text reporting fields were included for
analysis.

Case status was designated using the 2017 CDC surveillance criteria for Zika-associated
birth defects, which at the time included structural abnormalities of the brain and eye with
and without microcephaly, neural tube defects and other early brain malformations, and
consequences of central nervous system dysfunction (Honein et al., 2017; see Box 1).

Natural language processing

NLP techniques were used to derive quantitative data (variable features) from qualitative
data contained in open-text variables to be used for ML model development and training.

First, open-text data were standardized using (a) text cleaning by converting to all lower-case
characters; (b) removal of punctuation, numbers, whitespace, and common English words;
and (c) root-word reduction by stemming technique. Standardized open-text data were then
processed into variable features using term frequency-inverse document frequency (TF-
IDF), a technique which estimates the importance of a word by taking into account the
number of times the word appears in open-text, the total number of words in open-text, and
the number of the cases in which the word appears. These variable features were then
amended to data for each case to create an ML training data set (matrix). For each open-text
variable, a TF-IDF metric was created and appended to the matrix of non-text variables. Bi-
grams and tri-grams did not improve model performance and were removed in the matrices.

Variable features which summarize large numbers of open-text data were created using
Latent Dirichlet Allocation (LDA) and document word embeddings (Doc2Vec; Li et al.,
2018). LDA is a form of topic modeling that attempts to identify general topics from a body
of text data. Word embeddings are a general approach to quantify mathematically the
meaning of a word based upon adjacent words. Combining the two techniques has been
previously demonstrated to substantially improve model performance (Pratapa et al., 2018).

Custom variable features were created to group data from similar text features (e.g., all text
for the hearing exam, all text related to ultrasound exams). Due to the large number of
variable features from TF-IDF with a value of zero (i.e., no data), a truncated singular value
decomposition technique was applied to reduce both the overall sparsity (measure of number
of cells in a matrix with a value of zero relative to number of individual data points) and size
of the matrix.

In ML, a feature vector is a series of individual data points about an object which can be
represented spatially; feature vectors are the equivalent of vectors of explanatory variables
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that are used in statistical procedures such as linear regression. In this analysis, final features
vectors were normalized by L2 Euclidean normalization in order to have all features
uniformly scaled. Not all text features were included in the model training phase. Each
model was structured to reduce dimensionality (i.e., obtaining a set of principal variables to
reduce the number of random variables under consideration) and keep only features that
significantly contribute to explaining variation based upon a predetermined threshold.

ML methods

A binary classification of case versus non-case was used as the dependent variable for ML
model development. Models were trained using data sets of completed pregnancies that had
been prioritized for manual review and received a designation of case versus non-case by the
time of this analysis (USZPIR: 324 of 3,212 cases [10.1%]); ZAPSS: 523 of 3,943 cases
[13.2%]).

First, exploratory of ML methods focused on reducing the number of non-cases that would
undergo manual review. The ML models were then calibrated to maximize the number of
cases of completed pregnancies with a Zika-associated birth defect identified by models.
Because ascertainment of cases was prioritized, models that missed cases identified by
manual review were considered invalid for further applications.

A fivefold cross-validation approach was used to train and test models including voting
ensemble models (Hastie, Tibshirani, Friedman, & Franklin, 2005). Model sensitivity was
calculated as the percentage of completed pregnancies identified as cases by manual review
that were predicted as cases by the model. Review depth was defined as the percentage of
completed pregnancies that were prioritized by the ML model to undergo manual review
process to achieve a chosen model sensitivity threshold. Review depth was the
predetermined factor used for efficiency gains, and the corresponding model sensitivity was
used to evaluate model results, with the objective of achieving 100% sensitivity for
predicting a case also identified by manual review while minimizing review depth. The
potential percent reduction in review volume at a given model threshold was defined as the
percentage of completed pregnancies identified as non-cases by manual review that were not
prioritized by the ML model to undergo manual review.

ML algorithms (support vector machines [SVM], logistic regression, random forests [RF], &
nearest neighbors [KNN], gradient boosted trees [GBT], and decision trees) were assessed
individually and then developed into a voting ensemble model for each data set. A voting
ensemble model was explored to not rely on one algorithm as algorithm performance may
vary across use cases of ML as data features change. Ensemble model weighting schemes
were tested iteratively with weights of .1 to .9 given to each model and iterated to maximize
sensitivity. Probability thresholds for results were then explored to improve ensemble model
sensitivity and review depth. Potential percent reduction in review volume was calculated for
voting ensemble models at sensitivities 294% (see Appendix for individual model
parameters). Sensitivity and review depth were compared between ensemble and individual
models to identify gains or losses in improvement (i.e., did the ensemble do better or worse
than individual models).
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2.41 Ensemble model validation

Model validation was performed by applying the ensemble model with 100% sensitivity to
USZPIR and ZAPSS data that were not prioritized for manual review. The model was
expected to predict a low number of cases from these data, which had been screened away
from prioritized manual review as previously described because they either had only normal
findings among reported data, data uninformative for case status classification, or missing
data. Completed pregnancies predicted as cases by the ensemble model (possible cases)
were then manually reviewed by subject matter experts to assign case status.

31 RESULTS
3.11 U.S. Zika Pregnancy and Infant Registry

At a model prediction threshold of .95 (wherein model-identified cases have a probability of
>.95 of being a case identified by manual review), individual model sensitivity using fivefold
cross-validation was greatest for logistic regression (sensitivity 32%; review depth 17%),
followed by GBT (sensitivity 29%, review depth 15%), RF (sensitivity 8%, review depth
4%), and KNN (sensitivity 5%, review depth 4%; Table 1). Individual review depth to
achieve maximum sensitivity varied from 87% (RF) to 100% (SVM). The KNN model did
not reach 100% sensitivity and was not included in the voting ensemble model. SVM, RF,
logistic regression, and GBT were included in the voting ensemble model and were given
equal weighting.

Compared to a scenario in which all completed pregnancies (cases and non-cases) are
manually reviewed to achieve maximum sensitivity (sensitivity 100%; review depth 100%),
the USZPIR voting ensemble model achieved 100% sensitivity with a review depth of 91%
(Table 2). In this scenario, all of cases and 82% of non-cases would be manually reviewed—
a potential 18% reduction in volume of non-cases for manual review. The USZPIR voting
ensemble model achieved 96% sensitivity with a review depth of 75%. In this scenario, 96%
of cases and 50% of non-cases would be manually reviewed—a potential reduction of 50%
in non-cases for manual review. Compared to individual model performances, the voting
ensemble review depth at 100% sensitivity was greater than GBT individually.

3.21 Zika Active Pregnancy Surveillance System

At a model prediction of threshold .95, individual model sensitivity using fivefold cross-
validation was greatest for decision trees (sensitivity 52%, review depth 14%), followed by
logistic regression (sensitivity 28%, review depth 8%), GBT (sensitivity 10%, review depth
3%), SVM (sensitivity 7%, review depth 2%), and RF (sensitivity 2%, review depth 0%;
Table 3). Individual review depth to achieve maximum sensitivity varied from 94% (RF) to
99% (GBT and SVM models). SVM, RF, GBT, logistic regression, and decision trees were
included in the voting ensemble model. GBT and RF models were given twice the weight of
the other three models (logistic regression, decision trees, and SVM).

Using the voting ensemble model, to achieve 100% sensitivity, 94% ZAPSS of completed
pregnancies would require manual review (Table 2). In this scenario, 100% of cases and
92% of non-cases would be manually reviewed—a potential 8% reduction in volume of non-
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cases for manual review. To achieve 97% sensitivity, 50% of all reported completed
pregnancies would undergo manual review. In this scenario, 97% of cases and 34% of non-
cases would be manually reviewed—a potential 66% reduction in volume of non-cases for
manual review. Compared to the RF model individually, the best performing individual
model at 100% sensitivity, the voting ensemble review depth at 100% sensitivity was equal
to that of RF individually. Voting ensemble review depth was lower than that of RF at model
sensitivity of 90-99%.

Ensemble model validation

Ensemble models with 100% sensitivity identified an additional 204 possible cases from
USZPIR and an additional 101 possible cases from ZAPSS for manual review. These
possible cases represented 13.0% of unreviewed USZPIR cases (n = 1,566) and 5.8% of
unreviewed ZAPPS cases (n = 1,736), respectively. Manual review of these possible cases
did not yield additional cases of Zika-associated birth defects.

DISCUSSION

ML methods have potential to reduce modestly the number of non-cases that undergo
manual review (6-9% reduction in overall review volume) without sacrificing sensitivity for
ascertaining cases of Zika-associated birth defects. Moreover, ensemble models that
achieved 96-97% sensitivity may better reflect what is achievable in a real-world scenario,
while reducing the number of non-cases undergoing review by 50-66% (reduction in overall
review volume by 25-50%). Resources to manually review additional cases would need to
be allocated to approach 100% sensitivity. Additionally, larger reductions in overall review
volume were observed for ZAPSS compared to USZPIR, which might be attributable to the
larger number of non-text variables and open-text variables fields in ZAPSS available for
developing models.

Reductions in overall burden on resources to conduct manual review might be appealing;
however, there are important considerations for implementation. Because knowledge of the
range of outcomes of novel exposures may change over time, there are no reasonable
estimates of how long it will take to develop a final model for case status prediction. Case
status designations by ML models would benefit from validation against manual review to
ensure similar sensitivity and specificity for case identification. With buy-in from
stakeholders, ML models with desired levels of sensitivity and specificity might be
incorporated into routine surveillance procedures. Possible cases identified by ML models as
having the highest likelihood of being true cases might be prioritized for manual review or,
if acceptable, bypass manual review completely. Alternatively, as done for model validation
in this analysis, ML models might be used routinely to scan batches of data for non-cases in
order to identify missed possible cases.

ML methods cannot replace manual review completely. For instance, manual review
methods were a necessary step in creating a data set for model training and in scrutinizing
data for additional possible cases, especially where identification of possible cases differed
between voting ensemble models and current methods. This is especially important when
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evaluating initial ML models that achieve predictive performances that have an undesirable
or unbalanced number of missed cases or number of non-cases undergoing review.

During a public health emergency response, sensitivity of methods for identifying possible
cases for manual review is prioritized over specificity, especially when the full range of
outcomes of a new and emerging exposure are not yet known. In this analysis, ensemble
model validation identified additional completed pregnancies as possible cases, although
none were found to be true cases after manual review of their data. Close inspection of data
showed similarities between these possible cases and cases confirmed by manual review,
mainly characteristics which are known to increase the suspicion for the presence of a Zika-
associated birth defect. For example, presence of symptoms consistent with Zika virus
disease in the mother were found in both the additional possible cases and cases confirmed
via manual review.

There are several limitations to ML methods as applied in this exploratory analysis. First,
ML models were not developed to classify individual types of Zika-associated birth defect.
Manual review is still required to confirm the presence and type of Zika-associated birth
defect for public reporting. Additionally, the definition of Zika-associated birth defects used
for manual review at the time of this analysis has since been revised to exclude neural tube
defects. Finally, ML models developed in this analysis are specific for the methods of data
collection, review and classification used by USZPIR and ZAPSS surveillance systems.

Despite these limitations, the results of this ML exploration demonstrate potential for ML to
help reduce the number of cases undergoing manual review or at least to prioritize reviews.
Surveillance for prenatal exposures and infant outcomes might benefit from integration of
ML methods into manual review procedures, especially when data collection is expected to
be ongoing, when the burden of manual review is anticipated to reach resource capacity, and
where manual review methods for case classification are relatively stable. While ML models
may need to be retrained if data collection methods are changed or if the definition of an
outcome of interest is refined, establishing use of ML methods concurrently with manual
review might improve the ability to integrate ML methods early in an emergency response
and relieve burden of manual review. This may be especially important in scenarios with
potential for exponential increases in the volume of data for review and for the need of rapid
reporting of surveillance data to be used for public health action.
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APPENDIX A.

U.S. Zika Pregnancy and Infant Registry
Model Parameters

Support vector machine Unbalanced class weights {0:40%, 1:60%}
Kernel = “radial basis function”
Penalty parameter = 1

Random forest Number of trees: 100

Number of features: 150
k-nearest neighbors Number of neighbors =5
Logistic regression Penalty = “12”

Cost strength = 1

Gradient boosted machine  Learning rate = 0.1
Minimum sample split = 2
Number of boosting stages = 100
Max features = none

Max depth = 3

Zika Active Pregnancy Surveillance System

Model Parameters

Support vector machine Unbalanced class weights: N/A—SVM model for ZAPSS was attempted in initial model
training stages; however, was abandoned as it provided no meaningful change in model
performance

Kernel = “radial basis function”
Penalty parameter = 1

Random forest Number of trees = 100
Number of features = 250

Decision trees Imbalanced class weight {0:20%, 1:80%}
Number of features: all
Minimum split: 2

Logistic regression Penalty = “12”
Cost strength = 1

Gradient boosted machine  Learning rate = 0.1
Minimum sample split = 2
Number of boosting stages = 100
Max features = 250
Max depth = 3
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BOX 1

U.S. Zika Pregnancy and Infant Registry criteria for Zika-associated birth
defects@b.c

Brain abnormalities with and without microcephaly
Confirmed or possible congenital microcephaly®
Intracranial calcifications

Cerebral atrophy

Abnormal cortical formation (e.g., polymicrogyria, lissencephaly, pachygyria,
schizencephaly, gray matter heterotopia)

Corpus callosum abnormalities
Cerebellar abnormalities
Porencephaly
Hydranencephaly

Ventriculomegaly/hydrocephaly (excluding “mild” ventriculomegaly without other brain
abnormalities)

Fetal brain disruption sequence (collapsed skull, overlapping sutures, prominent occipital
bone, scalp rugae)

Other major brain abnormalities

Neural tube defects and other early brain malformations

Neural tube defects including anencephaly, acrania, encephalocele, spina bifida
Holoprosencephaly (arhinencephaly)

Eye abnormalities

Microphthalmia/anophthalmia

Coloboma

Cataract

Intraocular calcifications

Chorioretinal anomalies involving the macula (e.g., chorioretinal atrophy and scarring,
macular pallor, gross pigmentary mottling and retinal hemorrhage; excluding retinopathy
of prematurity)

Optic nerve atrophy, pallor, and other optic nerve abnormalities
Consequences of central nervous system dysfunction

Congenital contractures (arthrogryposis, club foot with associated brain abnormalities,
congenital hip dislocation or developmental dysplasia of the hip with associated brain
abnormalities)
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Congenital deafness documented by postnatal audiological testing

aAdapted from “Birth defects among fetuses and infants of U.S. women with evidence of
possible Zika virus infection during pregnancy” by Honein et al., 2017. PSince the
completion of this analysis, the criteria for Zika-associated birth defects has been updated
to remove those with NTDs and other early brain malformations or CNS dysfunction
with no other qualifying defects (Olson et al., 2019). ®Live births: measured head
circumference (adjusted for gestational age and sex) less than the third percentile at birth
or, if not measured at birth, within first 2 weeks of life. Pregnancy loss: prenatal head
circumference more than 3 SDs below the mean based on ultrasound or postnatal head
circumference less than the third percentile. Birth measurements are evaluated using the
Intergrowth-21st standards (http://intergrowth21.ndog.ox.ac.uk/) based on measurements
within 24 hr of birth.
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N
Data Collection
Gather data for completed pregnancies determined to be cases or non-cases by manual review
J
N
Natural Language Processing
Apply data cleaning and natural language processing methods to standardize open-text,
and derive quantitative data from open-text for machine learning modeling

J

Build and apply individual models using only one algorithmic approach for each model.
Determine individual model sensitivity and review depth at set prediction probability thresholds

Build and apply voting ensemble model using iterative weighted voting on multiple algorithm
approaches.
Determine ensemble model sensitivity and review depth at set prediction probability thresholds
Calculate potential reduction in volume of non-cases undergoing manual review.

Model Validation
Apply voting ensemble model to cases not yet determined to be cases or non-cases by manual
review

{ Individual Model Development and Training

Ensemble Model Development and Training }

FIGURE 1.
Flow chart of methods approach to exploring ML application in the Zika case review process
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\oting ensemble model sensitivity, depth, and percent reduction in number of non-cases for manual review

U.S. Zika Pregnancy and Infant Registry voting ensemble

model

Model Review Potential % reduction in
sensitivity depth non-cases for manual
(%) (%) review

100 100 0

100 91 18

96 75 50

94 67 67

83 50 N/A

75 44 N/A

49 27 N/A

29 16 N/A

8 5 N/A

Zika Active Pregnancy Surveillance System voting
ensemble method

Model
sensitivity
(%)

100

100

97

94

86

73

39

20

5

Review Potential % reduction in
depth non-cases for manual
(%) review

100 0

94 8

50 66

40 79

30 N/A

20 N/A

10 N/A

5 N/A

1 N/A

Note: Percent reduction in number of non-cases undergoing manual review was calculated for voting ensemble models at sensitivities 294%.
Review depth was defined as the number of completed pregnancies the ML model classified to undergo the manual review process (numerator)

over the total number of available completed pregnancies (denominator) to achieve a chosen sensitivity threshold.
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