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Abstract

In 2016, Centers for Disease Control and Prevention (CDC) established surveillance of pregnant 

women with Zika virus infection and their infants in the U.S. states, territories, and freely 

associated states. To identify cases of Zika-associated birth defects, subject matter experts review 

data reported from medical records of completed pregnancies to identify findings that meet 

surveillance case criteria (manual review). The volume of reported data increased over the course 

of the Zika virus outbreak in the Americas, challenging the resources of the surveillance system to 

conduct manual review. Machine learning was explored as a possible method for predicting case 

status. Ensemble models (using machine learning algorithms including support vector machines, 

logistic regression, random forests, k-nearest neighbors, gradient boosted trees, and decision trees) 

were developed and trained using data collected from January 2016–October 2017. Models were 

developed separately, on data from the U.S. states, non-Puerto Rico territories, and freely 

associated states (referred to as the U.S. Zika Pregnancy and Infant Registry [USZPIR]) and data 

from Puerto Rico (referred to as the Zika Active Pregnancy Surveillance System [ZAPSS]) due to 

differences in data collection and storage methods. The machine learning models demonstrated 

high sensitivity for identifying cases while potentially reducing volume of data for manual review 

(USZPIR: 96% sensitivity, 25% reduction in review volume; ZAPSS: 97% sensitivity, 50% 

reduction in review volume). Machine learning models show potential for identifying cases of 

Zika-associated birth defects and for reducing volume of data for manual review, a potential 

benefit in other public health emergency response settings.
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1 ∣ INTRODUCTION

In 2015, Zika virus emerged as a cause of serious defects of the brain and eye and has been 

associated with neurodevelopmental abnormalities, such as seizures, joint contractures, 

swallowing difficulties, vision impairments, and hearing loss in offspring of women with 

Zika virus infection during pregnancy (Honein et al., 2017; Moore et al., 2017; Rasmussen, 

Jamieson, Honein, & Petersen, 2016; Reynolds et al., 2017; Shapiro-Mendoza et al., 2017; 

Rice et al., 2018). In the setting of a public health emergency response, Centers for Disease 

Control and Prevention (CDC) collaborated with state, territorial, and local health 

departments to establish a national surveillance system of women with laboratory evidence 

of confirmed or possible Zika virus infection during pregnancy and their infants (Reynolds 

et al., 2017; Shapiro-Mendoza et al., 2017). Over 7,400 pregnancies completed between 

December 1, 2015–March 31, 2018 were monitored to better understand the effects of Zika 

virus infection during pregnancy on women, infants, and children. About 5–10% of infants 

of women with confirmed Zika virus infection during pregnancy were found to have Zika-

associated birth defects (Reynolds et al., 2017; Shapiro-Mendoza et al., 2017).

As part of surveillance, information was abstracted from medical records and reported by 

U.S. states, territories, and freely associated states. A rule-based process was used to screen 

data from completed pregnancies for possible abnormal findings. Each completed pregnancy 

with possible abnormal findings was prioritized for review by subject matter experts at CDC 

(manual review) to identify those completed pregnancies with findings that met surveillance 

criteria for Zika-associated birth defects (cases) and to distinguish them from completed 

pregnancies without these findings (non-cases; Reynolds et al., 2017; Shapiro-Mendoza et 

al., 2017).

Manual review is considered a gold standard method for distinguishing cases from non-cases 

(case status). This process involves consideration of many data points for each completed 

pregnancy, including findings from infant physical examination, neuroimaging, hearing 

screening, and eye examination. Manual review of each completed pregnancy with a 

possible abnormality maximizes sensitivity for detecting cases at the expense of both time 

and human resources for conducting the review. As the Zika virus outbreak in the Americas 

progressed, the volume of data reported to CDC increased, challenging the resources of the 

surveillance system for conducting manual review.

Automation of systematic surveillance processes by supervised machine learning (ML) and 

natural language processing (NLP) methods might present an opportunity to conduct more 

efficient manual review. ML/NLP methods create classification decisions based on patterns 

derived from existing data, and these classification decisions can be automated and applied 

to future data. ML has been proposed and explored in other clinical scenarios for predicting 

therapeutic outcomes, identifying abnormalities in radiology, and identifying risk in chronic 

disease (Kang, Schwartz, Flickinger, & Beriwal, 2015; Wall, Kosmicki, Deluca, Harstad, & 
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Fusaro, 2012; Wei, Yang, Nishikawa, & Jiang, 2005). For surveillance, results of previous 

manual reviews might be used to guide development of ML/NLP methods to predict case 

status algorithmically, thereby augmenting the processes of screening and manual review, 

reducing overall review volume, and potentially improving overall surveillance system 

performance in a public health emergency setting (Lee et al., 2018; Xiong et al., 2018).

Using the results of manual review by subject matter experts as the gold standard, we 

explored the use of ML/NLP processing and variable feature engineering methods for 

predicting case status. We estimated the volume of non-cases predicted by ML/NLP methods 

and the potential reduction in the volume of completed pregnancies undergoing manual 

review.

2 ∣ METHODS

Figure 1 presents a basic flow chart of our methods approach to exploring a ML application 

for the Zika Case Review Process

2.1 ∣ Data source

Pregnancies with laboratory evidence of confirmed or possible Zika virus infection were 

followed to pregnancy completion and into early childhood through active surveillance 

methods. Data on pregnancy, birth outcome, and findings from clinical evaluations of the 

infant were abstracted using standardized methods from prenatal, birth hospitalization, 

pediatrician, and specialty care medical records and reported to CDC. Data were reviewed to 

identify cases meeting the CDC surveillance criteria of Zika-associated birth defects. A 

trained reviewer scrutinized each completed pregnancy with data indicating a possible 

abnormality (from rules-based process), and review results were discussed with a panel of 

subject matter experts for final case classification.

Data collected from Puerto Rico was stored and analyzed separately due to differences in the 

amount and format of data collected. Data collected from the U.S. states, non-Puerto Rico 

territories, and freely associated states are referred to as the U.S. Zika Pregnancy and Infant 

Registry (USZPIR) in this analysis, and data collected from Puerto Rico are referred to as 

the Zika Active Pregnancy Surveillance System (ZAPSS).

Abstracted medical record data were included for 7,155 completed pregnancies (3,212 from 

the USZPIR; 3,943 from ZAPSS) which were reported to CDC from January 1, 2016 to 

October 31, 2017. Data from manual reviews completed by the time of this analysis were 

included for model development (324 from USZPIR and 523 for ZAPPS); data for 

remaining completed pregnancies were used for model validation exploration. Abstracted 

data included both non-text variables, such as dates of events (e.g., date of maternal 

symptoms, diagnosis, birth, and clinical evaluations), numerical values (e.g., head 

circumference measurements), and categorical information for outcomes (e.g., pregnancy 

outcome and birth defects), and open-text reporting fields (e.g., verbatim descriptions of 

results from neuroimaging studies).
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All independent variables from USZPIR and ZAPSS were initially considered for model 

development and testing. Variables were excluded from model development if they were not 

used for case status determination. For example, infant date of birth, estimated date of 

delivery, city of birth, and name of birth hospital did not provide useful information for 

determining if a Zika-associated birth defect is present or absent in an individual case. 

Included variables were standardized into binary and categorical variables. From USZPIR, a 

total of 198 non-text variables and 19 open-text reporting fields were included for analysis. 

From ZAPSS, 800 non-text variables and 142 open-text reporting fields were included for 

analysis.

Case status was designated using the 2017 CDC surveillance criteria for Zika-associated 

birth defects, which at the time included structural abnormalities of the brain and eye with 

and without microcephaly, neural tube defects and other early brain malformations, and 

consequences of central nervous system dysfunction (Honein et al., 2017; see Box 1).

2.2 ∣ Natural language processing

NLP techniques were used to derive quantitative data (variable features) from qualitative 

data contained in open-text variables to be used for ML model development and training.

First, open-text data were standardized using (a) text cleaning by converting to all lower-case 

characters; (b) removal of punctuation, numbers, whitespace, and common English words; 

and (c) root-word reduction by stemming technique. Standardized open-text data were then 

processed into variable features using term frequency-inverse document frequency (TF-

IDF), a technique which estimates the importance of a word by taking into account the 

number of times the word appears in open-text, the total number of words in open-text, and 

the number of the cases in which the word appears. These variable features were then 

amended to data for each case to create an ML training data set (matrix). For each open-text 

variable, a TF-IDF metric was created and appended to the matrix of non-text variables. Bi-

grams and tri-grams did not improve model performance and were removed in the matrices.

Variable features which summarize large numbers of open-text data were created using 

Latent Dirichlet Allocation (LDA) and document word embeddings (Doc2Vec; Li et al., 

2018). LDA is a form of topic modeling that attempts to identify general topics from a body 

of text data. Word embeddings are a general approach to quantify mathematically the 

meaning of a word based upon adjacent words. Combining the two techniques has been 

previously demonstrated to substantially improve model performance (Pratapa et al., 2018).

Custom variable features were created to group data from similar text features (e.g., all text 

for the hearing exam, all text related to ultrasound exams). Due to the large number of 

variable features from TF-IDF with a value of zero (i.e., no data), a truncated singular value 

decomposition technique was applied to reduce both the overall sparsity (measure of number 

of cells in a matrix with a value of zero relative to number of individual data points) and size 

of the matrix.

In ML, a feature vector is a series of individual data points about an object which can be 

represented spatially; feature vectors are the equivalent of vectors of explanatory variables 
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that are used in statistical procedures such as linear regression. In this analysis, final features 

vectors were normalized by L2 Euclidean normalization in order to have all features 

uniformly scaled. Not all text features were included in the model training phase. Each 

model was structured to reduce dimensionality (i.e., obtaining a set of principal variables to 

reduce the number of random variables under consideration) and keep only features that 

significantly contribute to explaining variation based upon a predetermined threshold.

2.3 ∣ ML methods

A binary classification of case versus non-case was used as the dependent variable for ML 

model development. Models were trained using data sets of completed pregnancies that had 

been prioritized for manual review and received a designation of case versus non-case by the 

time of this analysis (USZPIR: 324 of 3,212 cases [10.1%]); ZAPSS: 523 of 3,943 cases 

[13.2%]).

First, exploratory of ML methods focused on reducing the number of non-cases that would 

undergo manual review. The ML models were then calibrated to maximize the number of 

cases of completed pregnancies with a Zika-associated birth defect identified by models. 

Because ascertainment of cases was prioritized, models that missed cases identified by 

manual review were considered invalid for further applications.

A fivefold cross-validation approach was used to train and test models including voting 

ensemble models (Hastie, Tibshirani, Friedman, & Franklin, 2005). Model sensitivity was 

calculated as the percentage of completed pregnancies identified as cases by manual review 

that were predicted as cases by the model. Review depth was defined as the percentage of 

completed pregnancies that were prioritized by the ML model to undergo manual review 

process to achieve a chosen model sensitivity threshold. Review depth was the 

predetermined factor used for efficiency gains, and the corresponding model sensitivity was 

used to evaluate model results, with the objective of achieving 100% sensitivity for 

predicting a case also identified by manual review while minimizing review depth. The 

potential percent reduction in review volume at a given model threshold was defined as the 

percentage of completed pregnancies identified as non-cases by manual review that were not 

prioritized by the ML model to undergo manual review.

ML algorithms (support vector machines [SVM], logistic regression, random forests [RF], k-

nearest neighbors [KNN], gradient boosted trees [GBT], and decision trees) were assessed 

individually and then developed into a voting ensemble model for each data set. A voting 

ensemble model was explored to not rely on one algorithm as algorithm performance may 

vary across use cases of ML as data features change. Ensemble model weighting schemes 

were tested iteratively with weights of .1 to .9 given to each model and iterated to maximize 

sensitivity. Probability thresholds for results were then explored to improve ensemble model 

sensitivity and review depth. Potential percent reduction in review volume was calculated for 

voting ensemble models at sensitivities ≥94% (see Appendix for individual model 

parameters). Sensitivity and review depth were compared between ensemble and individual 

models to identify gains or losses in improvement (i.e., did the ensemble do better or worse 

than individual models).
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2.4 ∣ Ensemble model validation

Model validation was performed by applying the ensemble model with 100% sensitivity to 

USZPIR and ZAPSS data that were not prioritized for manual review. The model was 

expected to predict a low number of cases from these data, which had been screened away 

from prioritized manual review as previously described because they either had only normal 

findings among reported data, data uninformative for case status classification, or missing 

data. Completed pregnancies predicted as cases by the ensemble model (possible cases) 

were then manually reviewed by subject matter experts to assign case status.

3 ∣ RESULTS

3.1 ∣ U.S. Zika Pregnancy and Infant Registry

At a model prediction threshold of .95 (wherein model-identified cases have a probability of 

≥.95 of being a case identified by manual review), individual model sensitivity using fivefold 

cross-validation was greatest for logistic regression (sensitivity 32%; review depth 17%), 

followed by GBT (sensitivity 29%, review depth 15%), RF (sensitivity 8%, review depth 

4%), and KNN (sensitivity 5%, review depth 4%; Table 1). Individual review depth to 

achieve maximum sensitivity varied from 87% (RF) to 100% (SVM). The KNN model did 

not reach 100% sensitivity and was not included in the voting ensemble model. SVM, RF, 

logistic regression, and GBT were included in the voting ensemble model and were given 

equal weighting.

Compared to a scenario in which all completed pregnancies (cases and non-cases) are 

manually reviewed to achieve maximum sensitivity (sensitivity 100%; review depth 100%), 

the USZPIR voting ensemble model achieved 100% sensitivity with a review depth of 91% 

(Table 2). In this scenario, all of cases and 82% of non-cases would be manually reviewed—

a potential 18% reduction in volume of non-cases for manual review. The USZPIR voting 

ensemble model achieved 96% sensitivity with a review depth of 75%. In this scenario, 96% 

of cases and 50% of non-cases would be manually reviewed—a potential reduction of 50% 

in non-cases for manual review. Compared to individual model performances, the voting 

ensemble review depth at 100% sensitivity was greater than GBT individually.

3.2 ∣ Zika Active Pregnancy Surveillance System

At a model prediction of threshold .95, individual model sensitivity using fivefold cross-

validation was greatest for decision trees (sensitivity 52%, review depth 14%), followed by 

logistic regression (sensitivity 28%, review depth 8%), GBT (sensitivity 10%, review depth 

3%), SVM (sensitivity 7%, review depth 2%), and RF (sensitivity 2%, review depth 0%; 

Table 3). Individual review depth to achieve maximum sensitivity varied from 94% (RF) to 

99% (GBT and SVM models). SVM, RF, GBT, logistic regression, and decision trees were 

included in the voting ensemble model. GBT and RF models were given twice the weight of 

the other three models (logistic regression, decision trees, and SVM).

Using the voting ensemble model, to achieve 100% sensitivity, 94% ZAPSS of completed 

pregnancies would require manual review (Table 2). In this scenario, 100% of cases and 

92% of non-cases would be manually reviewed—a potential 8% reduction in volume of non-
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cases for manual review. To achieve 97% sensitivity, 50% of all reported completed 

pregnancies would undergo manual review. In this scenario, 97% of cases and 34% of non-

cases would be manually reviewed—a potential 66% reduction in volume of non-cases for 

manual review. Compared to the RF model individually, the best performing individual 

model at 100% sensitivity, the voting ensemble review depth at 100% sensitivity was equal 

to that of RF individually. Voting ensemble review depth was lower than that of RF at model 

sensitivity of 90–99%.

3.3 ∣ Ensemble model validation

Ensemble models with 100% sensitivity identified an additional 204 possible cases from 

USZPIR and an additional 101 possible cases from ZAPSS for manual review. These 

possible cases represented 13.0% of unreviewed USZPIR cases (n = 1,566) and 5.8% of 

unreviewed ZAPPS cases (n = 1,736), respectively. Manual review of these possible cases 

did not yield additional cases of Zika-associated birth defects.

4 ∣ DISCUSSION

ML methods have potential to reduce modestly the number of non-cases that undergo 

manual review (6–9% reduction in overall review volume) without sacrificing sensitivity for 

ascertaining cases of Zika-associated birth defects. Moreover, ensemble models that 

achieved 96–97% sensitivity may better reflect what is achievable in a real-world scenario, 

while reducing the number of non-cases undergoing review by 50–66% (reduction in overall 

review volume by 25–50%). Resources to manually review additional cases would need to 

be allocated to approach 100% sensitivity. Additionally, larger reductions in overall review 

volume were observed for ZAPSS compared to USZPIR, which might be attributable to the 

larger number of non-text variables and open-text variables fields in ZAPSS available for 

developing models.

Reductions in overall burden on resources to conduct manual review might be appealing; 

however, there are important considerations for implementation. Because knowledge of the 

range of outcomes of novel exposures may change over time, there are no reasonable 

estimates of how long it will take to develop a final model for case status prediction. Case 

status designations by ML models would benefit from validation against manual review to 

ensure similar sensitivity and specificity for case identification. With buy-in from 

stakeholders, ML models with desired levels of sensitivity and specificity might be 

incorporated into routine surveillance procedures. Possible cases identified by ML models as 

having the highest likelihood of being true cases might be prioritized for manual review or, 

if acceptable, bypass manual review completely. Alternatively, as done for model validation 

in this analysis, ML models might be used routinely to scan batches of data for non-cases in 

order to identify missed possible cases.

ML methods cannot replace manual review completely. For instance, manual review 

methods were a necessary step in creating a data set for model training and in scrutinizing 

data for additional possible cases, especially where identification of possible cases differed 

between voting ensemble models and current methods. This is especially important when 
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evaluating initial ML models that achieve predictive performances that have an undesirable 

or unbalanced number of missed cases or number of non-cases undergoing review.

During a public health emergency response, sensitivity of methods for identifying possible 

cases for manual review is prioritized over specificity, especially when the full range of 

outcomes of a new and emerging exposure are not yet known. In this analysis, ensemble 

model validation identified additional completed pregnancies as possible cases, although 

none were found to be true cases after manual review of their data. Close inspection of data 

showed similarities between these possible cases and cases confirmed by manual review, 

mainly characteristics which are known to increase the suspicion for the presence of a Zika-

associated birth defect. For example, presence of symptoms consistent with Zika virus 

disease in the mother were found in both the additional possible cases and cases confirmed 

via manual review.

There are several limitations to ML methods as applied in this exploratory analysis. First, 

ML models were not developed to classify individual types of Zika-associated birth defect. 

Manual review is still required to confirm the presence and type of Zika-associated birth 

defect for public reporting. Additionally, the definition of Zika-associated birth defects used 

for manual review at the time of this analysis has since been revised to exclude neural tube 

defects. Finally, ML models developed in this analysis are specific for the methods of data 

collection, review and classification used by USZPIR and ZAPSS surveillance systems.

Despite these limitations, the results of this ML exploration demonstrate potential for ML to 

help reduce the number of cases undergoing manual review or at least to prioritize reviews. 

Surveillance for prenatal exposures and infant outcomes might benefit from integration of 

ML methods into manual review procedures, especially when data collection is expected to 

be ongoing, when the burden of manual review is anticipated to reach resource capacity, and 

where manual review methods for case classification are relatively stable. While ML models 

may need to be retrained if data collection methods are changed or if the definition of an 

outcome of interest is refined, establishing use of ML methods concurrently with manual 

review might improve the ability to integrate ML methods early in an emergency response 

and relieve burden of manual review. This may be especially important in scenarios with 

potential for exponential increases in the volume of data for review and for the need of rapid 

reporting of surveillance data to be used for public health action.
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APPENDIX A.

U.S. Zika Pregnancy and Infant Registry

Model Parameters

Support vector machine Unbalanced class weights {0:40%, 1:60%}
Kernel = “radial basis function”
Penalty parameter = 1

Random forest Number of trees: 100
Number of features: 150

k-nearest neighbors Number of neighbors = 5

Logistic regression Penalty = “12”
Cost strength = 1

Gradient boosted machine Learning rate = 0.1
Minimum sample split = 2
Number of boosting stages = 100
Max features = none
Max depth = 3

Zika Active Pregnancy Surveillance System

Model Parameters

Support vector machine Unbalanced class weights: N/A—SVM model for ZAPSS was attempted in initial model 
training stages; however, was abandoned as it provided no meaningful change in model 
performance
Kernel = “radial basis function”
Penalty parameter = 1

Random forest Number of trees = 100
Number of features = 250

Decision trees Imbalanced class weight {0:20%, 1:80%}
Number of features: all
Minimum split: 2

Logistic regression Penalty = “12”
Cost strength = 1

Gradient boosted machine Learning rate = 0.1
Minimum sample split = 2
Number of boosting stages = 100
Max features = 250
Max depth = 3
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BOX 1

U.S. Zika Pregnancy and Infant Registry criteria for Zika-associated birth 
defectsa,b,c

Brain abnormalities with and without microcephaly

Confirmed or possible congenital microcephalyc

Intracranial calcifications

Cerebral atrophy

Abnormal cortical formation (e.g., polymicrogyria, lissencephaly, pachygyria, 

schizencephaly, gray matter heterotopia)

Corpus callosum abnormalities

Cerebellar abnormalities

Porencephaly

Hydranencephaly

Ventriculomegaly/hydrocephaly (excluding “mild” ventriculomegaly without other brain 

abnormalities)

Fetal brain disruption sequence (collapsed skull, overlapping sutures, prominent occipital 

bone, scalp rugae)

Other major brain abnormalities

Neural tube defects and other early brain malformations

Neural tube defects including anencephaly, acrania, encephalocele, spina bifida

Holoprosencephaly (arhinencephaly)

Eye abnormalities

Microphthalmia/anophthalmia

Coloboma

Cataract

Intraocular calcifications

Chorioretinal anomalies involving the macula (e.g., chorioretinal atrophy and scarring, 

macular pallor, gross pigmentary mottling and retinal hemorrhage; excluding retinopathy 

of prematurity)

Optic nerve atrophy, pallor, and other optic nerve abnormalities

Consequences of central nervous system dysfunction

Congenital contractures (arthrogryposis, club foot with associated brain abnormalities, 

congenital hip dislocation or developmental dysplasia of the hip with associated brain 

abnormalities)
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Congenital deafness documented by postnatal audiological testing

aAdapted from “Birth defects among fetuses and infants of U.S. women with evidence of 

possible Zika virus infection during pregnancy” by Honein et al., 2017. bSince the 

completion of this analysis, the criteria for Zika-associated birth defects has been updated 

to remove those with NTDs and other early brain malformations or CNS dysfunction 

with no other qualifying defects (Olson et al., 2019). cLive births: measured head 

circumference (adjusted for gestational age and sex) less than the third percentile at birth 

or, if not measured at birth, within first 2 weeks of life. Pregnancy loss: prenatal head 

circumference more than 3 SDs below the mean based on ultrasound or postnatal head 

circumference less than the third percentile. Birth measurements are evaluated using the 

Intergrowth-21st standards (http://intergrowth21.ndog.ox.ac.uk/) based on measurements 

within 24 hr of birth.
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FIGURE 1. 
Flow chart of methods approach to exploring ML application in the Zika case review process
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TABLE 2

Voting ensemble model sensitivity, depth, and percent reduction in number of non-cases for manual review

U.S. Zika Pregnancy and Infant Registry voting ensemble
model

Model
sensitivity
(%)

Review
depth
(%)

Potential % reduction in
non-cases for manual
review

100 100 0

100 91 18

96 75 50

94 67 67

83 50 N/A

75 44 N/A

49 27 N/A

29 16 N/A

8 5 N/A

Zika Active Pregnancy Surveillance System voting
ensemble method

Model
sensitivity
(%)

Review
depth
(%)

Potential % reduction in
non-cases for manual
review

100 100 0

100 94 8

97 50 66

94 40 79

86 30 N/A

73 20 N/A

39 10 N/A

20 5 N/A

5 1 N/A

Note: Percent reduction in number of non-cases undergoing manual review was calculated for voting ensemble models at sensitivities ≥94%. 
Review depth was defined as the number of completed pregnancies the ML model classified to undergo the manual review process (numerator) 
over the total number of available completed pregnancies (denominator) to achieve a chosen sensitivity threshold.
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