Damping Properties of Selected Steels and Cast Irons

By A. Visnapuu, R. W. Nash, and P. C. Turner
Damping Properties of Selected Steels and Cast Irons

By A. Visnapuu, R. W. Nash, and P. C. Turner
Visnapuu, A. (Aarne)
Damping properties of selected steels and cast irons.

(Report of investigations; 9068)

Supt. of Docs. no.: 1 28.23: 9068.

CONTENTS

Abstract... 1
Introduction... 2
 Previous investigations.. 2
 Purpose of this investigation.. 3
Experimental procedure.. 3
Results and discussion... 4
 Steels... 4
 Cast irons.. 10
Conclusions.. 14
References.. 14

ILLUSTRATIONS

1. Microstructures of carbon and alloy steels... 5
2. Specific damping capacity of carbon and alloy steels as a function of stress... 7
3. Microstructures of spheroidized heat-treated carbon and alloy steels 8
4. Microstructures of cast irons.. 11
5. Specific damping capacity of cast irons as a function of stress..................................... 13

TABLES

1. Specific damping capacities and microstructures of carbon and alloy steels.............. 7
2. Specific damping capacities of spheroidized heat-treated carbon and alloy steels........ 9
3. Specific damping capacities and graphite morphologies of selected cast irons......... 10
4. Composition and mechanical properties of selected cast irons................................ 10
<table>
<thead>
<tr>
<th>Unit of Measure</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>°C/h</td>
<td>°C/h</td>
<td>degree Celsius per hour</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>Hz</td>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>in</td>
<td>in</td>
<td>inch</td>
</tr>
<tr>
<td>lb/min</td>
<td>lb/min</td>
<td>pound per minute</td>
</tr>
<tr>
<td>min</td>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>Oe</td>
<td>oersted</td>
<td></td>
</tr>
<tr>
<td>pct</td>
<td>percent</td>
<td></td>
</tr>
<tr>
<td>lb</td>
<td>pound</td>
<td></td>
</tr>
<tr>
<td>psi</td>
<td>pound (force) per square inch</td>
<td></td>
</tr>
<tr>
<td>vol pct</td>
<td>volume percent</td>
<td></td>
</tr>
<tr>
<td>wt pct</td>
<td>weight percent</td>
<td></td>
</tr>
</tbody>
</table>
DAMPING PROPERTIES OF SELECTED STEELS AND CAST IRONS

By A. Visnapuu, R. W. Nash, and P. C. Turner

ABSTRACT

Excessive noise and high vibration are inherently associated with equipment used in the mining, extraction, and processing of mineral resources. High vibration degrades structural components, often leading to catastrophic failure and loss of productivity, and excessive noise can result in permanent hearing loss.

In order to foster efficient utilization of the Nation's mineral resources and minimize occupational hazards associated with mineral processing, the Bureau of Mines investigated the relationship between the microstructures of carbon and alloy steels and cast irons and their damping capacities (ability to absorb vibration). Researchers measured damping capacity and other properties and investigated the effects of carburizing, spheroidizing, and annealing.

The investigators found that in carbon and alloy steels, rounded colonies of fine-grained pearlite in a ferrite matrix correlate well with low damping capacity. Steel microstructures that exhibit sharp-faceted pearlite in ferrite matrix and partially or fully spheroidized cementite in ferrite show considerably higher damping. In cast irons, the lowest damping capacity is associated with nodular graphite microstructure, and the specific damping capacity (SDC) increases as the graphite microstructure progresses from nodular to compacted to flake. Predominant ferrite in cast irons is also associated with good damping. SDC data are presented for selected carbon and alloy steels and cast irons.

1Research physicist.
2Physical science technician.
3Metallurgist.
Rolla Research Center, Bureau of Mines, Rolla, MO.
INTRODUCTION

In recent years, the vibration damping inherent in engineering materials has gained importance as a design consideration, in addition to the more commonly considered mechanical properties such as tensile and yield strength, ductility, hardness, and toughness. The need for improved damping properties, without undue sacrifice of other properties that determine durability, is the result of increased demand for lower product, workplace, and environmental noise, and the realization that reduced vibration can prolong the service life of machinery and equipment. One fundamental way to improve damping properties is to use relatively high-damping materials. Of the available structural alloy systems, only ferrous alloys appear to be cheap enough in intrinsic material and processing cost to be economically feasible.

PREVIOUS INVESTIGATIONS

Previous investigations have developed a variety of damping materials and methods, and some have been developed to the point of commercial availability. Manganese-copper binary alloys ranging from 50 to 80 wt pct Mn, both cast (1) and powder-metallurgy consolidated (2), exhibit SDC's in the range 20 to 25 pct at a stress of 5,000 psi. In addition to high damping capacity, these alloys have useful mechanical properties comparable to those of mild steel. High damping is obtained by solution heat treatment followed by aging to precipitate an intermetallic phase.

Other Mn-Cu-based damping alloys with minor metal additions have been developed. Sonoston alloy (3) has the composition Cu-54 Mn-4.25 Al-3 Fe-1.5 Ni. The damping alloys Incramute I and II, developed by the International Copper Research Association, consist of Cu-40 Mn-2 Al and Cu-40 Mn-2 Al-2 Sn, respectively (4-6). They are commercially available.

While the Mn-Cu alloys possess excellent vibration damping and good mechanical properties, they have some disadvantages: (1) The cost of component metals and fabrication is high, and (2) damping capacity decreases with temperature. Other low-strength materials are adequate for many applications. The Sonoston and Incramute I alloys lose their damping above 750 C. Damping in Incramute II disappears above about 1250 C. The higher damping transition temperature for Incramute II is due to the tin addition, which apparently affects precipitate stability (4).

A ferromagnetic iron-base alloy containing chromium and aluminum, developed in Japan, is reported to have high damping up to 3500 C (7). A drawback with this alloy is that damping capacity is dependent on an external magnetic field. Maximum damping requires an applied magnetic field of about 20 Oe. Another alloy, NIVCO-10, developed by Westinghouse Electric Corp., has good damping and excellent mechanical properties; however, its composition, Co-22.5 Ni-1.8 Ti, is high in the critical metals cobalt and nickel, which must be imported, meaning that its use must be restricted to special applications.

Alternate approaches for damping commonly use shock absorbers, shock mounts, constrained-layer damping, and bonded-on materials to isolate, increase mass, or increase stiffness. In many instances, these measures provide the most practical and economic damping method. Sometimes they are only partly effective but are used because engineering materials with the requisite damping and physical properties are not available or are cost-prohibitive. Some aluminum alloys and brass have SDC's on the order of 0.01 to 1 pct at stress levels below 3,500 psi.

Of the iron-based materials, gray cast irons exhibit excellent damping owing to energy dissipation resulting from high.
stress concentrations around the embrittling graphite flakes; however, useful toughness is practically nil. This has limited the use of gray cast irons to applications where toughness is not a major factor. Ductile irons have nodular graphite dispersed in continuous matrices similar to those of steel, which imparts toughness and ductility and permits plastic deformation, but markedly reduces damping capacity relative to that of gray cast irons. Ductile irons are actually a family of materials; they differ as a result of factors such as composition, section size, cooling rate, and heat treatment, and can be processed into a wide range of properties. Compared with steels, ductile irons have generally inferior ductility, weldability, and impact and fatigue resistance, but superior castability, machinability, wear and corrosion resistance, and damping capacity. Compacted graphite cast irons have structures that are intermediate in terms of form, to the flakes of gray cast iron and the nodules of ductile iron. Graphite in compacted graphite cast iron has rounded tips, relative to the flakes in gray cast iron, but is continuous in the sense that flakes are continuous in the matrix (actually they are relatively long-range colonies on a microscopic scale). This graphite morphology, which may be associated with some graphite tending toward flakes or nodules, imparts certain desirable properties relative to gray cast iron, such as increased ductility and tensile and yield strength.

Steels tend to exhibit low SDC's in comparison with those of the cast irons, which is attributable to the absence of free graphite. Damping in steels increases somewhat with the carbon content, and spheroidization tends to further enhance damping capacity.

PURPOSE OF THIS INVESTIGATION

This investigation was conducted as part of the Bureau's research effort to conserve resources and increase productivity through improved performance and develop safer materials. Baseline SDC's were determined for representative industrial and structural carbon steels and cast irons and were correlated to the respective carbide and graphite microstructures. Selected materials were subjected to carburizing, spheroidizing, and annealing heat treatments to delineate their influence on damping and other properties. The data reported is intended to supplement the meager damping capacity information available on these materials and to serve as a benchmark against which ongoing developmental work can be compared. The ultimate goal is to use this information to produce new iron-base high-damping materials or to alter the structure of existing materials to improve damping.

EXPERIMENTAL PROCEDURE

The carbon and alloy steels investigated in this study were of the following AISI grades: 1020, 1035, 1045, 1095, 1117, 1144, 4140, and 4340. The steels were selected as being representative of commercially available steels. Specimens for measuring damping capacity and other physical properties were prepared from commercial hot-rolled rod stock that varied in diameter from 3/4 to 2-1/4 in. In addition to SDC evaluation in the as-received condition, measurements were made after selective heat treatment to alter the carbide morphology. Damping capacity specimens of the 1045, 1095, 1144, 4140, and 4340 steels were carburized for 3 h at 925°C using sodium carbonate, barium carbonate, and charcoal. The 1045, 1144, 4140, and 4340 steels were then given a spheroidizing heat treatment by holding at 750°C for 6 h, cooling at 30°C/h to 650°C, and holding at 650°C for 36 h. The 1095 steel was spheroidized by holding at 715°C for 6 h, followed by a 36-h hold at 680°C.

Cast irons were prepared in 60- and 120-lb heats by induction melting in magnesium oxide crucibles. The temperature was monitored with Pt, Pt-10 Rh
thermocouples in protection tubes, and carbon equivalent was determined from the
temperature of eutectic solidification. Heats were constituted to have nominally
2.4 to 3.0 pct Si, carbon equivalent from 4.2 to 4.8 pct, and 0.3 pct Mn. Magnesium or mischmetal (57 pct Ce) was
added as a nodulizing agent, and titanium or zirconium was added separately
as a denodulizing agent. Some of the 60-lb heats were made using a single
additive containing both magnesium and titanium. All the cast iron heats were
cast in standard keel-block molds (core sand) with 1-in legs. Ductile iron cast­
tings were ferritize-annealed by heat­ing in helium for 3 h at 900 °C, followed
by cooling to and holding at 695 °C for 6 h.

Tensile specimens with a standard 0.5-
in diam (11) were prepared from keel-
block legs and tested on a tensile test
machine at a 4,800-lb/min load rate to
yield. Tensile strength, 0.2-pct offset
yield strength, and elongation (percent)
were calculated.

Chemical analyses and microscopy were
conventional. Carbon content was deter-
mined from pin castings and analyses
of other elements from drillings.

Microscopy specimens were polished with
diamond abrasive and etched in nital
(2 vol pct HNO₃ and 98 vol pct C₂H₅OH).

SDC was measured with a torsion pendu-

um designed and assembled by the Bureau
(12-13). SDC is defined as

\[SDC = \left[\frac{(A_0^2 - A_n^2)}{nA_0^2} \right] \times 100, \]

where \(A_0 \) is the initial amplitude of
torsional vibration at resonance and \(A_n \)
is the amplitude \(n \) cycles after \(A_0 \).

Typical resonance frequencies for these
specimens varied from 7 to 15 Hz due to
differences in modulus of elasticity.

The damping capacity is independent of
frequency and mode of vibration (1).

Although the results are reported as
SDC, other descriptors of damping, such
as loss factor, fraction of critical
damping, logarithmic decrement, and half-
power bandwidth, can be readily obtained
from the data. The SDC measurements were
made on shouldered specimens 4.5 in long
with a 2.5-in gauge length and a 0.188-
in reduced diameter. The curves of SDC
versus torsional stress (presented in the
next section) are digitally filtered
curves derived from the 19 or more SDC
values obtained for each specimen. The
curves were generated by a sliding, 5-
point curve-fitting computer routine.

RESULTS AND DISCUSSION

STEELS

The results of SDC measurements on
the hot-rolled carbon and alloy steel rod
stock are summarized in table 1. SDC's
for each steel are tabulated at five
stress levels ranging from 2,500 to
20,000 psi, with the steels listed in
order of increasing damping in the 2,500-
to 10,000-psi range. A brief descrip-
tion of the carbide morphology of each
steel is included in table 1, and the
corresponding microstructures are shown
in figure 1. SDC-versus-stress curves
representative of trends are presented in
figure 2.

Comparison of the damping data (table
1) with the corresponding steel micro-
structures (fig. 1) indicates that the
presence of rounded colonies of fine-
grained lamellar pearlite or unresolved
pearlite in a ferrite matrix correlates
with low SDC, whereas steel microstruc-
tures that exhibit sharp-faceted pearlite
colonies and relatively high proportions
of coarse-grained pearlite in a ferrite
matrix show considerably higher damping.

This agrees with the theory that in-
creased stress concentrations associated
with sharp points at phase boundaries
increase damping, as does a higher pro-
portion of ferrite in the matrix. The
AISI 1045, 1144, 1095, and 1117 steels,
as a group, exhibited considerably lower
damping than the remaining four steels
listed in table 1. Their microstructures
can be characterized as rounded colonies
of fine lamellar pearlite in a ferrite
matrix (1045 and 1144), mostly unresolved
pearlite with some coarse lamellar spac-
ing (1095), and rounded colonies of unre-
solved pearlite in an increased ferrite
FIGURE 1.—Microstructures of carbon and alloy steels (X 500). AISI designations: A, 1045; B, 1144; C, 1095; D, 1117.
FIGURE 1.—Microstructures of carbon and alloy steels (X 500)—Continued. AISI designations: E, 4140; F, 4340; G, 1035; H, 1020.
TABLE 1. - Specific damping capacities and microstructures of carbon and alloy steels

<table>
<thead>
<tr>
<th>Steel, AISI</th>
<th>Specific damping capacity, pct</th>
<th>Microstructure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,500 psi</td>
<td></td>
</tr>
<tr>
<td>1045</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1144</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>1095</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>1117</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>4140</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>4340</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>1035</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>1020</td>
<td>1.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Microstructures are shown in figure 1.

matrix (1117). Damping for the AISI 4140, 4340, 1035, and 1020 steels was higher. They were characterized by lamellar pearlite colonies with fine-to-coarse spacing in ferrite (4140 and 4340), coarse grained structure of sharp-faceted pearlite in a matrix of ferrite (1035), and reduced quantities of sharp-faceted pearlite in ferrite matrix (1020).

The damping capacities of three of five specimens were improved by carburizing and spheroidizing heat treatment, which altered the carbide morphology. Table 2 summarizes the SDC's of the five specimens, and figure 3 shows their corresponding carbide morphologies. It is evident from the photomicrographs in figure 3 that, in all cases, the lamellar pearlite was converted to partly spheroidized pearlite and spheroidal cementite.

SDC's for all carbon steels (1045, 1095, and 1144) improved, especially at stress levels above 10,000 psi. All of these steels had rather low initial SDC's, and spheroidizing improved the SDC by a factor of 2 at the 5,000-psi stress level and by as much as tenfold at the 20,000-psi stress level. The SDC of the 4140 alloy steel did not change, but this material exhibited high damping prior to the heat treatment. The SDC of the 4340 alloy steel decreased somewhat in the 10,000- to 20,000-psi stress range, although this alloy also showed good
FIGURE 3.—Microstructures of spheroidized heat-treated carbon and alloy steels (X 500). AISI designations: A, 1045; B, 1144; C, 1095; D, 1095 (fully spheroidized).
damping before heat treatment. For comparison, the SDC of a fully spheroidized 1095 steel is included in table 2, and a photomicrograph of this steel is presented in figure 3.

The results of the SDC measurements on selected carbon and alloy steels indicate that damping is primarily dependent on the shape of the intergranular boundaries and the distribution of ferrite in the matrix. For steels characterized by a defined intergranular boundary between the pearlite colonies and ferrite matrix or grains, damping increases as intergranular boundary surfaces become rougher, thus producing higher stress concentrations. When the steels are heat treated, the pearlite colonies tend to

TABLE 2. — Specific damping capacities of spheroidized heat-treated carbon and alloy steels

<table>
<thead>
<tr>
<th>Steel, AISI1</th>
<th>Specific damping capacity, pct</th>
<th>Spheroidized heat treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1045...</td>
<td>2,500 psi</td>
<td>5,000 psi</td>
</tr>
<tr>
<td>1144...</td>
<td>2.0</td>
<td>4.4</td>
</tr>
<tr>
<td>1095...</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>10952</td>
<td>1.2</td>
<td>2.1</td>
</tr>
<tr>
<td>4140...</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>4340...</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

ND Not determined.

1Microstructures are shown in figure 3.
2Fully spheroidized.
lose their identity as the lamellar carbides begin to spheroidize and the ferrite agglomerates into a more continuous form. It is surmised that as the grain boundaries disappear during spheroidization, they lose their influence on damping, and the stress concentrations associated with the phase boundaries become predominant. For a given carbon content, more phase-boundary surface area is present for partially spheroidized carbides than for fully spheroidized carbides. Partially spheroidized particles are more sharply faceted and would tend to exhibit higher damping. As spheroidization increases, the total cementite surface area becomes smaller and smoother, whereas the ferrite becomes more continuous. The decrease in surface area and increased smoothness would tend to decrease damping; whereas, increased ferrite would tend to increase damping. This was observed in the AISI 1095 steels, where the partially spheroidized steel had higher damping at the 20,000-psi stress level than the fully spheroidized steel. Manipulating these parameters in steels can enhance, or also reduce, the inherent damping associated with them.

CAST IRONS

The damping capacities of selected ductile, compacted graphite, and gray cast iron specimens were measured. Table 3 presents the SDC measurements for eight cast irons, and table 4 presents their compositions and mechanical properties. Figure 4 shows their etched microstructures. In the photomicrographs (fig. 4), ferrite appears light; pearlite, dark gray; graphite, gray-to-black; and primary carbide particles, light. The eight cast irons were selected to demonstrate change in SDC with graphite morphology and are representative of all the cast irons tested. SDC-versus-stress curves are presented in figure 5 for two

TABLE 3. Specific damping capacities and graphite morphologies of selected cast irons

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Graphite morphology</th>
<th>2,500 psi</th>
<th>5,000 psi</th>
<th>10,000 psi</th>
<th>15,000 psi</th>
<th>20,000 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N</td>
<td>0.7</td>
<td>1.0</td>
<td>1.6</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td>1.1</td>
<td>1.5</td>
<td>2.1</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>C</td>
<td>N</td>
<td>2.3</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>D</td>
<td>N, C</td>
<td>1.4</td>
<td>2.0</td>
<td>2.7</td>
<td>4.3</td>
<td>ND</td>
</tr>
<tr>
<td>E</td>
<td>C, N</td>
<td>1.9</td>
<td>2.9</td>
<td>4.3</td>
<td>5.8</td>
<td>ND</td>
</tr>
<tr>
<td>F</td>
<td>C, N</td>
<td>2.1</td>
<td>3.3</td>
<td>5.2</td>
<td>7.0</td>
<td>ND</td>
</tr>
<tr>
<td>G</td>
<td>F</td>
<td>4.1</td>
<td>5.7</td>
<td>9.2</td>
<td>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>H</td>
<td>F</td>
<td>13.0</td>
<td>15.9</td>
<td>22.0</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND Not determined.
1Microstructures are shown in figure 4.
2C is compacted, N is nodular, and F is flake. Predominant form listed first.

TABLE 4. Composition and mechanical properties of selected cast irons

<table>
<thead>
<tr>
<th>Specimen</th>
<th>C (wt%)</th>
<th>Si (wt%)</th>
<th>Mn (wt%)</th>
<th>S (wt%)</th>
<th>Mg (wt%)</th>
<th>Ce (wt%)</th>
<th>Zr (wt%)</th>
<th>Ti (wt%)</th>
<th>Tensile Yield, psi</th>
<th>Strength, psi</th>
<th>Elongation, pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.55</td>
<td>2.22</td>
<td>0.55</td>
<td>0.016</td>
<td>0.035</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>79,600</td>
<td>48,200</td>
<td>10.5</td>
</tr>
<tr>
<td>B</td>
<td>3.22</td>
<td>2.46</td>
<td>.29</td>
<td>.005</td>
<td>.016</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>65,200</td>
<td>41,900</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>3.22</td>
<td>2.46</td>
<td>.29</td>
<td>.005</td>
<td>.016</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>65,200</td>
<td>41,900</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>3.84</td>
<td>2.37</td>
<td>.30</td>
<td>.002</td>
<td>ND .015</td>
<td>.060</td>
<td>ND</td>
<td>ND</td>
<td>61,900</td>
<td>44,100</td>
<td>7.5</td>
</tr>
<tr>
<td>E</td>
<td>3.84</td>
<td>2.76</td>
<td>.31</td>
<td>.002</td>
<td>ND .012</td>
<td>.070</td>
<td>ND</td>
<td>ND</td>
<td>55,300</td>
<td>41,900</td>
<td>5.5</td>
</tr>
<tr>
<td>F</td>
<td>3.82</td>
<td>2.79</td>
<td>.29</td>
<td>.004</td>
<td>ND .014</td>
<td>ND .240</td>
<td>ND</td>
<td>ND</td>
<td>51,600</td>
<td>40,700</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>3.61</td>
<td>2.64</td>
<td>.24</td>
<td>.005</td>
<td>.007</td>
<td>ND</td>
<td>ND</td>
<td>.120</td>
<td>26,600</td>
<td>23,800</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>3.74</td>
<td>2.68</td>
<td>.29</td>
<td>.007</td>
<td>.008</td>
<td>ND</td>
<td>ND</td>
<td>.070</td>
<td>25,300</td>
<td>21,900</td>
<td>1.5</td>
</tr>
</tbody>
</table>

ND Not determined. 1Microstructures are shown in figure 4.
FIGURE 4.—Microstructures of cast irons (X 100). Specimens A through D as listed in tables 3 and 4. See text for description of microstructures.
FIGURE 4.—Microstructures of cast irons (X 100)—Continued. Specimens E through H as listed in tables 3 and 4. See text for description of microstructures.
FIGURE 5.—Specific damping capacity of cast irons as a function of stress. Letters in key indicate specimens listed in tables 3 and 4 and shown in figure 4.

ductile, one compacted graphite, and one
gray cast iron (four of the eight se-
lected cast irons). Specimens A, B, and
C (fig. 4) were ductile irons with graph-
ite nodules in a pearlite-plus-ferrite
matrix, graphite nodules in ferrite and
some pearlite, and graphite nodules in a
ferrite matrix, respectively. Specimen C
was produced from the same casting as
specimen A by ferritize-annealing. The
increase in SDC as a function of in-
creased ferrite matrix is readily appar-
ent from the data in table 3. Specimen
B, which had more ferrite and less pearl-
rite than specimen A, exhibited from 1.6
to 1.3 times the SDC of specimen A. The
ferritize-annealed specimen C with the
ferrite matrix exhibited from 3.3 to 1.3
times the SDC of specimen A. In the case
of specimen C, the most pronounced
increase in SDC was at the lower stress
levels, which is most desirable from an
engineering standpoint.

Ferritize-annealing decomposes hard-
matrix Fe₃C in the pearlite to softer
ferrite plus graphite. The graphite
deposits on the existing graphite nod-
ules. Although precise mechanisms are
not clear, a softer condition of the
matrix and the additional graphite, which
increased the area associated with grain
boundaries, would be expected to increase
stress concentrations. This would be
more effective than the straight cast
structure in dissipating rather than
storing strain energy in the matrix and
thus improving the damping capacity.

Specimens D, E, and F (fig. 4) were
 castings that contained compacted graph-
ite and some nodular graphite, with the
proportion of compacted graphite to nod-
ular graphite increasing from specimen
D to F. All specimens also contained
isolated patches of pearlite in the
ferrite matrix. SDC's for these cast
irons (D, E, and F) at all stress levels
(table 3) increased in the same sequence
as the increase in compacted graphite.
SDC at the 2,500-psi stress level ranged
from 1.4 to 2.1 pct, which was two to
three times greater than the SDC for
ductile iron specimen A. Similar
improvement in SDC was evident at all the
stress levels listed in table 3, and SDC
at the 15,000-psi stress level ranged
from 4.3 to 7.0 pct for these three
specimens.

The highest SDC's were observed for
specimens G and H, which consisted of
gray cast iron with a flake graphite
microstructure. Specimen G was a gray
cast iron with type D (interdendritic
segregation and random orientation)
graphite distribution, and it exhibited
SDC's approximately six times higher than
those of ductile cast iron specimen A.
Specimen H had a type C (superimposed
flake size and random orientation) graph-
ite distribution, and its SDC values
ranged from 14 to 18 times higher than
those of ductile cast iron specimen A.

Compacted graphite has a "wormy"
appearance intermediate between the
appearances of nodules and flakes. It is
a distinct type in that it is continuous
in the bulk matrix, as are the flakes of gray cast iron; but, compared with the sharp edges of flakes, the rounded edges are less effective for stress concentration and resultant vibration energy dissipation. For a given matrix, these rounded edges account, to a large extent for the SDC of compacted graphite cast iron falling between those of ductile and gray cast iron.

Comparison of the cast iron damping capacities in table 3 with the mechanical properties in table 4 indicates an inverse relationship between SDC and elongation and tensile and yield strength. SDC increases as percent elongation and tensile and yield strength decrease. This is not unexpected, because the trend follows the sequence of graphite morphology from nodular to compacted to flake or their various combinations. Thus, in the absence of SDC data for cast irons, elongation and tensile and yield strength information can be used to arrive at an estimate of their damping capabilities.

CONCLUSIONS

The steels and cast irons investigated here represent only a small fraction of the carbide and graphite morphologies possible for these materials. The intent of the study was to provide baseline damping capacity data for some common structural and engineering materials, and to determine relationships between damping capacity and material microstructure. The results indicate that damping in both the steels and cast irons examined is strongly dependent on the level of stress associated with the intergranular boundaries and the presence of ferrite in the matrix. Damping improves with rougher intergranular contact, increased ferrite, or their various combinations. Heat treatments that accentuate these conditions in the matrix increase damping. Compared to carbon and alloy steels, cast irons even with the lowest SDC's exhibit better damping in most cases. The SDC of some alloy steels can be increased to the level of cast iron SDC's by heat treating.

REFERENCES

