Computer Modeling of Dust and Forces for Longwall Mining Systems

By B. D. Hanson and W. W. Roepke
Report of Investigations 9203

Computer Modeling of Dust and Forces for Longwall Mining Systems

By B. D. Hanson and W. W. Roepke

UNITED STATES DEPARTMENT OF THE INTERIOR
Donald Paul Hodel, Secretary

BUREAU OF MINES
T S Ary, Direcțor
Hanson, Bruce D.
Computer modeling of dust and forces for longwall mining systems.

(Bureau of Mines report of investigations; 9203)

Bibliography: p. 10.

Supt. of Docs.: 128.23:9203.

CONTENTS

Abstract .. 1
Introduction .. 1
Program description ... 2
Program operation ... 4
Program use ... 6
Verification ... 8
Discussion .. 9
References .. 10
Appendix A.—Program listing ... 11
Appendix B.—Parameter definition .. 23
Appendix C.—Sample data .. 24

ILLUSTRATIONS

1. Program flowchart .. 3
2. Seam cross section ... 4
3. Main menu ... 5
4. Sample summary report .. 5
5. Parameter modification menu .. 5
6. Parameter change example ... 6
7. Comparison of field and CSM results .. 9

TABLES

1. Minimum data requirements ... 7
2. Parameter values for verification ... 8
3. Test conditions .. 8
4. Comparison of test results and CSM analysis ... 8
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfm</td>
<td>cubic foot per minute</td>
<td>lb/ft³</td>
<td>pound per cubic foot</td>
</tr>
<tr>
<td>deg</td>
<td>degree</td>
<td>lb/in²</td>
<td>pound per square inch</td>
</tr>
<tr>
<td>ft/min</td>
<td>foot per minute</td>
<td>pct</td>
<td>percent</td>
</tr>
<tr>
<td>ft·lb</td>
<td>foot pound</td>
<td>psi</td>
<td>pound (force) per square inch</td>
</tr>
<tr>
<td>hp</td>
<td>horsepower</td>
<td>rpm</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>in</td>
<td>inch</td>
<td>yr</td>
<td>year</td>
</tr>
<tr>
<td>lb</td>
<td>pound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPUTER MODELING OF DUST AND FORCES
FOR LONGWALL MINING SYSTEMS

By B. D. Hanson¹ and W. W. Roepke²

ABSTRACT

An interactive computer program has been developed by the Bureau of Mines which enables the user to identify the effect of cutting system changes on relative dust generation for longwall shearer drums. The program simultaneously evaluates machine and coal seam parameters, and those parameters which the user can control. The user can change one or more of these parameters at a time to determine their effect on relative dust generation, cutting forces, and/or cost. The program is written in the BASIC programming language. A complete program listing is included along with user instructions and sample outputs. This program is a more comprehensive version of the relative dustiness index (REDI) program described in Bureau Report of Investigations 8979.

INTRODUCTION

Since the enactment of the Federal Coal Mine Health and Safety Act of 1969, the Bureau of Mines has conducted an extensive research program on the control and reduction of respirable coal dust. Over the past 15 yr, research has been conducted in small-scale laboratory tests, in intermediate-sized prototype tests, and in full-scale in-mine demonstrations. The main objective of the work at the Bureau's Twin Cities (MN) Research Center has been the determination of the effect of controllable cutting system parameters on respirable dust generation. These controllable parameters include depth of cut, bit spacing, bit geometry, and operating conditions.

The body of data collected during this research provides a broad base of knowledge on the coal cutting phenomenon. The results are available to the industry in the form of a multitude of Bureau publications. There is so much information in so many places that individuals interested in reducing respirable dust generation at a specific mining operation will have difficulty finding their way through the available data to extract the specific information they need. The advent of the microcomputer and its universal availability provides a means of alleviating this problem.

This report presents a cutting system model (CSM) that incorporates the research results on the effects of various cutting system parameters on the generation of respirable coal dust. The CSM provides the user with a means to evaluate, on a relative basis, the effect of cutting system changes without the time or expense of actual equipment modification. The CSM is an advanced version of REDI (I).³ This new version incorporates preliminary models of multiple bit interaction and bit wear effects.

The CSM mathematically evaluates the effects of cutting system changes on primary respirable dust generation. A longwall respirable dust simulator developed by Haney (2) at the Mine Safety and Health Administration (MSHA) correlates the effects of secondary dust sources and primary dust generated by cutting action of the drum. The MSHA model requires personal dust exposure measurements and dust source measurements collected at the face to determine the contribution of each dust source to the worker's exposure. The MSHA program provides a qualitative list of recommended options to aid in correcting any compliance problems.

¹Physical scientist.
²Supervisory physical scientist.
³Twin Cities Research Center, Bureau of Mines, Minneapolis, MN.
³Italic numbers in parentheses refer to items in the list of references preceding the appendixes at the end of this report.
PROGRAM DESCRIPTION

The CSM program was developed to analyze the relative dust generated by a double-drum ranging arm shearer cutting in a coal seam containing rock band or middle man. Simpler situations, such as a single drum shearer, may also be analyzed. The program is menu driven, allowing the user to make parametric changes with a minimum of steps. It is written in BASIC and will run on an IBM personal computer (PC), or equivalent. The menus through which the program operates allow the user to change parameter values, calculate dust values, save modified data files, obtain printer copies of summary reports, lists of modifications, and a listing of the entire data file. Also, two "Help" menus provide online assistance to the user. The program performs the analysis using either a fixed number of bits, or will vary the number of bits based on the cut depth and a space-depth ratio specified by the user. A program listing is given in appendix A. The parameters used are defined in appendix B.

The logical flow of the program is shown in figure 1. An average cut depth will be calculated based on either a user specified advance rate, or, if none is supplied, the computer will calculate the advance rate from the maximum volume of cut coal that the drum can hold. Maximum volume is defined as

\[V_o = (D_o^2 - D_i^2)W(\pi/4) - (V_iV_hV_tV_n), \]

where \(D_o \) = drum diameter,
\(D_i \) = inner drum diameter,
\(W \) = web width,
\(V_i \) = vane length,
\(V_h \) = vane height,
\(V_t \) = vane thickness,
and \(V_n \) = number of starts (vanes).

If the user has selected the fixed space-depth ratio mode for the analysis, the number of bits is calculated. The space to depth ratio (S-D) may be set to any value the operator chooses. The average cut depth will then be computed for each vertical strata (coal, rock, coal) through which the drum is cutting (fig. 2). This average cut depth is calculated based on the analysis of rotary cutting performed by Roepke (3). The equation used is

\[\text{average depth} = \int \frac{W_2}{(W_2 - W_1)} D(W) \, dW, \]

where \(W_1 \) = angle at entry,
\(W_2 \) = angle at exit,
\(D(W) = R + A \cos(W) - (R^2 - A^2 \sin^2(W))^{1/2} \)
unless \(D(W) > D_{\text{max}} \) in which case \(D(W) = D_{\text{max}} \)

\[R = \text{drum radius}, \]
\[A = \text{advance per revolution}, \]
\[D_{\text{max}} = \text{maximum cut depth due to bit interaction}, \]
and \(W \) = rotation angle about drum center.

Once the average cut depth is calculated, the cutting and normal forces will be computed. Both the cutting and normal forces have been shown to be linear functions of depth (3-4). The force equations are defined by a slope and intercept, which can be obtained from either laboratory cutting tests or from in situ measurements with the Bureau's in-seam tester (5). The effect of bit wear is incorporated by the application of multipliers to both the cutting and normal forces. For new bits (e.g., wear equal to 0 pct), the multiplier is 1. A wear effect with up to three different stages of wear can be used by the program. The wear effect values used in appendix C (parameters 39 to 60) are taken from laboratory wear research results (4).

The required drum torque and advancing thrust are then calculated from the cutting and normal forces, drum revolution per minute, drum diameter, and number of bits. If either the torque or thrust exceeds that which is available, the advance rate is reduced to 95 pct of the current value and the calculation procedure is repeated. This iterative process is continued until both the required torque and thrust are less than available. Airborne dust, production, and cost values are calculated for a summary report. The program then returns the user to the main menu.

Footnote: Reference to specific products does not imply endorsement by the Bureau of Mines.
Calculate from maximum volume

User specified advance rate

Cut depth

Compute number of bits *

Compute average cut depth for each section of the drum by bit type

Compute bit force required torque-thrust and airborne dust

*If in fixed S-D mode

Drum dimensions bit spacing seam conditions

Force parameters condition

Reduce advance rate No

Is torque-thrust available

Yes

Compute production, airborne dust, and costs; generate report

Return to main menu

Figure 1.—Program flowchart.
The program is menu driven. The main menu, which controls all the program functions, is shown in figure 3. Selecting item 1 on this menu causes the program to recalculate the relative dust value using the procedures described in the previous section. Figure 4 shows an example of the summary report that is generated by the analysis. At this point the user is given the option of printing a hard copy of the report. The user will be returned to the main menu regardless of the choice made.

Changes in parameter values are accomplished by using item 2 on the main menu, which gives the user access to the parameter modification menu (fig. 5). The parameters used by the program are divided into the five categories listed in figure 5. Appendix B gives a list of parameter definitions and identifies the category in which the parameter appears. Figure 6 demonstrates how a parameter value (in this case, drum revolutions) would be changed. Item 3 on the main menu allows the user to specify the advance rate either in foot per minute or ton per shift. If an advance rate is not specified the program will automatically calculate the advance rate based on the maximum volume of coal that the drum can transport without excessive secondary dust generation caused by crushing and regrinding of the cut coal. If the user sets the advance rate higher than this maximum, the program will perform all the necessary calculations to determine forces, cost, and production. However, no relative dust value will be printed. Instead, the program will print a statement indicating that the drum is overloaded and causing excessive secondary dust generation. Selecting item 4 allows the analysis to be done using any fixed space-depth ratio set by the user. The number of bits will be determined from the calculated average cut depth and S-D ratio. If option 4 is not selected, the analysis will be performed using the number of bits specified in element 25 of the parameter list. Item 5 sets the wear condition of the bits. The value is entered as a percent of total bit life. Item 6 provides a data file utility that allows saving the current data file, inputting a new data file, or obtaining a hard copy of the entire data file. Item 7 provides online help messages to assist the user. Selecting this item causes another menu (fig. 6) to be printed. The first six items of the help index menu are identical to their counterparts on the main menu. Selecting the appropriate item from this menu will cause a help message covering the subject to be printed. The parameter modification menu also contains a help index, which covers the items in that menu.

Two aspects of the analysis are controlled by the parameter values. Setting the rock band top (data element 21) and the rock band bottom (data element 22) equal to
1 - RECALCULATE RELATIVE DUST VALUE
2 - MODIFY SYSTEM PARAMETERS
3 - SPECIFY ADVANCE RATE
4 - SPECIFY SPACE/DEPTH RATIO
5 - CHANGE WEAR CONDITION
6 - DATA FILE UTILITY
7 - HELP INDEX
8 - TERMINATE PROGRAM

ENTER THE NUMBER FOR THE ACTION YOU WISH TO DO NEXT ? 2

Figure 3.—Main menu.

THE DRUM ADVANCE IS NOT LIMITED

THE BITS ARE 0 PERCENT WORN

MAX. CUT DEPTH, VANE BIT (IN) 1.76
LINE BIT SPACING (IN) 4.93
BITS PER VANE 7.00
BIT SPACE TO DEPTH RATIO 2.79

MAX. CUT DEPTH, GAGE BIT (IN) 1.47
NUMBER OF GAGE LINES 5.00
NUMBER OF GAGE BITS PER LINE 3.60

AVAILABLE ADVANCING THRUST 6000
LEAD DRUM ADVANCING THRUST 4606
TRAILING DRUM ADV. THRUST 2685

AVAILABLE CUTTER TORQUE 50000
LEAD DRUM CUTTER TORQUE 15863
TRAILING DRUM CUTTER TORQUE 9167

ADVANCE (FT/Min) 15.00
COST/TON - BITS AND POWER 0.25

TONS PER SHIFT 2550.24
COST/SWIFT - BITS AND POWER 649.19

VANE CONTRIBUTION (PCT) 57.45
GAGE CONTRIBUTION (PCT) 42.55

* FULL SHIFT RELATIVE DUST - 492.61 PER TON 3.42 PER CU. M. *

Figure 4.—Sample summary report.

the same value eliminates the rock band from the calculations. Secondly, if the mining height (data element 24) and the drum diameter are the same, the program assumes there is only a single drum cutting.

The program has a built-in limit on the number of bits per vane. This limit is calculated from the bit block and drum dimensions. If the number of bit blocks reaches the physical limit for the space available, the program will continue the calculations fixing the number of bits at this maximum. Should the program reach the maximum number of bits, a message stating this fact will appear on the screen.

Figure 5.—Parameter modification menu.
In using the CSM to analyze drum designs it is important to realize the user may not have access to values for all the parameters used by the program. A number of the variables in the program were included in anticipation of program expansion and/or development of broader data bases to more fully support the program. Table 1 specifies which data elements must be known to analyze relative dust; forces and drum torque requirements; bit and power costs and production; and to evaluate the effect of bit wear. Appendix C lists a data file used in development of the program which can be used for default values.

Data elements 9 and 10 (available advancing thrust and available cutting torque) are used by the program to limit the maximum advance of the shearer. In determining the proper values to use, advancing thrust should reflect only the thrust available to advance the drum into the face. The force necessary to move the machine should not be included in data element 9. Also, the value for available cutting torque should reflect not only the cutting motor torque, but also the shearer's ability to react that torque load. The cutting motors may have the capability to generate more torque than the shearer can successfully react, resulting in the shearer climbing the face. The value used for data element 10 should take this into consideration. The equipment manufacturer should have this information.

Since the program was developed as a relative dust indicator, the default values for the first and second dust parameters and grindability should be adequate for most applications. The four slope-intercept pairs (data elements 35-38 and 48-51) needed for normal and cutting forces can be obtained by using the Bureau's in-seam-tester (5) or from laboratory tests. Data elements 39-47 and 52-60 are used to determine normal and cutting force as a function of wear condition. Ongoing Bureau bit wear testing on a number of different bit types will provide data that can be used to determine these data elements.

Data element 30, dust suppression, is included to allow a measured value to be used if the operator wishes to make the program site specific. Normally, it need not be changed by a user.

The interaction between the parameters is complex and the effect of changing any single parameter is dependent on the values of the others. The two variables that have the major influence on dust generation are the depth of cut and the number of bits on the drum. Increasing the depth of cut and/or reducing the number of bits will reduce the dust generated by the drum. While the number of bits is limited by only the bit block dimensions, the depth of cut may be limited by any of several variables. The depth of cut is determined by the advance rate, the drum revolution per minute, and the number of starts.

PROGRAM USE

Figure 6.--Parameter change example.
TABLE 1. - Minimum data requirements

<table>
<thead>
<tr>
<th>Element</th>
<th>Relative dust</th>
<th>Force, drum torque</th>
<th>Cost or production</th>
<th>Bit wear effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum diameter</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Top vane diameter</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner drum diameter</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web width</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vane width</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vane thickness</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vane height</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Drum vane wrap</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Available advancing thrust</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Available cutting torque</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of starts</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Number of gauge lines</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Drum revolutions</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1st dust parameter</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd dust parameter</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive strength</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grindability Index</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swell factor</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakout angle</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Rock band top</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Rock band bottom</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Percent silica in rock band</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining height</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bits per vane</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bit block length</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bit block width</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Number of gauge bits</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Airflow</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust suppression</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production time per shift</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per bit</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per kilowatt-hour</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bit life</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Normal force intercept</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Normal force slope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock band normal force intercept</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock band normal force slope</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1st stage end point</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st stage intercept</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st stage slope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d stage end point</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d stage intercept</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d stage slope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d stage end point</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d stage intercept</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d stage slope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock band cutting force slope</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1st stage end point</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st stage intercept</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st stage slope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d stage end point</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d stage intercept</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d stage slope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d stage end point</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d stage intercept</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d stage slope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Not used in current version of program.
The advance rate in turn may be limited by the volume of cut coal the drum can hold or by high cutting or normal forces. These high cutting and normal forces could result from the presence of a rock-band or by assuming highly worn bits. The total force on the drum is a function of the number of vane bits and gauge bits. The percent contribution of the vane and gauge bits to the dust make is given in the summary report (fig. 4) to aid the user in determining the best place from which to remove bits.

The dust values computed by the program are relative. A single value of 10.0, for example, has no meaning unless another number is generated by a change in some parameter(s). If the second number is lower than 10.0, then the change should result in lower dust generation and vice versa.

VERIFICATION

A comparison of relative dust values calculated by the CSM and in-mine results from a Bureau contract (6) was made. The drum specifications and operating conditions for the test drum are given in table 2. Table 3 shows the combinations of drum speed and bits per vane that were run, along with the average advance rate for each combination. The 7.5 bit per vane figure shown in these two tables occurs because as part of the test series every other bit on each vane was removed, leaving seven bits on one vane and eight on the other, thereby doubling the bit spacing on each vane. Since the CSM treats both vanes as being equal, 7.5 bits per vane was used. The values for inner drum diameter, vane thickness, and vane height were estimated since values were not given in reference 6. The value of 14 in for inner drum diameter was necessary to allow sufficient open volume in the drum to allow the 27.5 ft/min advance rate. This could have also been accomplished by specifying a lower swell factor and using a larger inner drum diameter. The results from the CSM analysis and the test results are shown in table 4 and figure 7. Both the test results and CSM analysis show an increase in dust generation as drum speed is increased and a drop in dust generation as the number of bits per vane was halved. The test result data show a higher rate of increase with drum speed than does the CSM analysis, while the drop in dust generation, due to removal of bits, was approximately the same order of magnitude.

Other reports on field tests were reviewed for use in evaluating the CSM. None of the field tests covered by these reports were conducted in a manner that allowed the results to be used to evaluate the CSM. The primary problem was that variables not modelled by the CSM, such as water spray systems, were simultaneously changed with the cutting system parameters. This effectively masks any changes in dust generation due to changes in the cutting system.

| TABLE 2. - Parameter values for verification |
|------------------|------------------|
| Variable | Value |
| Diameter, in: | |
| Tip to tip | 60 |
| Top vane diameter| 52 |
| Inner drum diameter| 14 |
| Web width | 30 |
| Vane, in: | |
| Width | 27 |
| Thickness | 1 |
| Height | 19 |
| Wrap angle, deg | 360 |
| Number of-Starts | |
| Bits per vane | 7.5, 15 |
| Gauge lines | 5 |
| Gauge bits | 18 |
| Drum speed, rpm | 35, 45, 55, 70 |

<table>
<thead>
<tr>
<th>TABLE 3. - Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum speed, rpm</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>7.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 4. - Comparison of test results and CSM analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum speed, rpm</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>7.5</td>
</tr>
</tbody>
</table>
DISCUSSION

An interactive computer program has been developed which allows the user to evaluate, on a relative basis, the effect of cutting system changes on primary dust generation for double arm ranging shearsers. The program is written in BASIC for use on IBM compatible microcomputers. The program is menu driven and allows the user to systematically vary cutting system parameters either individually or collectively to determine their effect on dust generation.

Expensive and time consuming underground "cut and try" testing can be substantially reduced or eliminated by using the program to determine the range of cutting parameters that produces a minimum relative dust value. Those parameters which have the greatest effect on dust can be easily identified and given priority on any underground equipment changes to reduce dust generation.

Figure 7.—Comparison of field and CSM results.
REFERENCES

APPENDIX A--PROGRAM LISTING

```
10 DIM NAMS(60), IV(60), PC(10), F$(1)
20 PRINT TAB(30); "CUTTING SYSTEM MODEL"
30 PRINT TAB(27); "LONGWALL SHEARER VERSION 2.0"
40 PRINT; PRINT TAB(20); "by Wallace W. Roepke and Bruce D. Hanson"
50 PRINT TAB(17); "US Department of the Interior, Bureau of Mines"
60 PRINT" For technical assistance contact the authors at the Twin Cities"
70 PRINT" Research Center, 5629 Minnehaha Avenue So., Minneapolis, MN 55417"
80 PRINT TAB(20); "or phone (612) 725-4780 or 725-4782"
90 PRINT; PRINT" THIS PROGRAM CALCULATES RELATIVE RESPIRABLE DUST
GENERATED BY A ROTARY DRUM"
100 PRINT"SHEARER BASED ON DRUM DIMENSIONS, SEAM PARAMETERS, AND
OPERATING CONDITIONS."
110 PRINT"SECONDARY DUST, THAT IS, DUST GENERATED BY THE GRINDING
ACTION OF THE DRUM AND*
120 PRINT"FALLING COAL IS INCLUDED IN THE CALCULATIONS. RELATIVE
EFFECTS DUE TO CHANGES IN"
130 PRINT"THE SUPPRESSION AND/OR COLLECTION SYSTEMS ARE INCORPORATED.
THE PROGRAM ALSO"
140 PRINT"CALCULATES CUTTING FORCES AND EVALUATES AN OPERATOR'S BIT
COSTS, POWER COSTS,"
150 PRINT"AND PRODUCTION FOR EITHER NEW OR WORN BITS. THE USER MUST
PROVIDE SITE SPECIFIC"
160 PRINT"MIDDLEMAN PARAMETERS. THE USER CAN MODIFY ALL OF THE DRUM
DIMENSIONS AND"
170 PRINT"OPERATING CONDITIONS EITHER COLLECTIVELY OR INDIVIDUALLY TO
DETERMINE THE"
180 PRINT"RELATIVE CHANGES DUE TO INTERACTIVE EFFECTS ON DUST
GENERATION, CUTTING FORCES,"
190 PRINT"BIT AND POWER COSTS, AND PRODUCTION FOR THEIR GIVEN SEAM
CONDITIONS."
200 PRINT; PRINT"....HIT RETURN TO CONTINUE....."; INPUT A$
205 PRINT; PRINT; PRINT; PRINT; PRINT; PRINT; PRINT TAB(30); "DISCLAIMER OF
LIABILITY"
210 PRINT; PRINT; PRINT; PRINT; PRINT; PRINT; PRINT" The Bureau of Mines expressly declares
that there are no warranties"
220 PRINT"express or implied which apply to the software contained
herein. By acceptance"
230 PRINT"and use of said software, which is conveyed to the user
without consideration"
240 PRINT"by the Bureau of Mines, the user hereof expressly waives any
and all claims for"
250 PRINT"damage and/or suits for or by reason of personal injury, or
property damage,"
260 PRINT"including special, consequential or similar damages arising
out of or in any"
270 PRINT"way connected with the use of the software contained herein."
280 C1=LOG(10) : PI=3.1415926# : F$(0)="SCRN:" : F$(1)="LPT1;"
```
290 DEF FN DP(Z)=R*A*COS(Z)-SQR(R*R-A*A*SIN(Z)^2)
300 PRINT:PRINT:INPUT;"ENTER DATA FILE NAME ";FI$:PRINT
310 OPEN "I", #1, FI$
320 FOR I=1 TO 60 :INPUT #1, NAM$(I), IV(I) :NEXT I
330 CLOSE:PRINT
340 GOTO 1980
350 LTS="NOT"
360 VL=SQR((PI*IV(2)*IV(8)/360)^2+IV(5)^2)
370 AN=ATN(PI*IV(2)*IV(8)/360/IV(5))*(180/PI)
380 VO=(IV(1)^2-IV(3)^2)*IV(4)*PI/4-VL*IV(7)*IV(6)*IV(11))*66
390 CM=VO/IV(18)/3456*IV(13)
400 IF MA=0 THEN CF=CM
410 IF CF>=CM THEN LTS="VOLUME"
420 AD=CF/IV(1)/IV(4)*144
430 DC=AD*12/IV(11)/IV(13)
440 F2=VL*SIN(AN*PI/180)/IV(5):F3=IV(26)/IV(27)
450 F1=INT(VL*SIN(AN*PI/180)/IV(26))
460 IF F2 < F3 THEN F1=INT(IV(5)/IV(27))
470 IF IV(25) <= F1 THEN 490
480 GOTO 530
490 IF OB=0 THEN 590
500 OS=DC*SF
510 F=CINT(IV(5)/OS)
520 IF F < F1 THEN 580
530 PRINT:PRINT TAB(9)" THE SHEARER CAN'T EXCEED";F1;'"BITS PER VANE FOR THE DRUM AND BIT"
540 PRINT TAB(9)" BLOCK DIMENSIONS BEING USED. THE AVAILABLE CUTTER TORQUE OR THE S/D"
550 PRINT TAB(9)" RATIO MUST BE INCREASED OR THE BIT BLOCK SIZE MUST BE CHANGED. "
560 IV(25)=F1
570 GOTO 590
580 IV(25)=F
590 K=36:GOSUB 2730:MN=MF
600 K=49:GOSUB 2730
610 R=IV(1)/2
620 OS=IV(5)/IV(25)
630 DX=OS*TAN((90-IV(20)/2)*PI/180)
640 A=AD*12/IV(13)/(IV(11))
650 A$="_ _ _ _ _ _ C_H_E_C_K_I_N_G A_D_V_A_N_C_E __ R_A_T_E_ _O_F_ _F_E_E_T __ P_E_R __ M_I_N_U_T_E"
660 PRINT:PRINT USING A$;AD
670 REM VANE BITS - LEAD DRUM
680 REM
690 REM
710 P2=ATN(A/2/SQR(R*R-A*A/4))*PI/2
720 P3=-P2:GOSUB 2980
730 NV=MN*NF:CV=MF*FC:DV=D:LVC=CV:LVN=NV
740 REM
750 REM GAGE BITS - LEAD DRUM
760 REM
770 A=12*AD/IV(13)/IV(28)*IV(12)
780 OS=(IV(4)-IV(5))/IV(12)-1
790 DX=OS*TAN((90-IV(20)/2)*PI/180)
800 P2=ATN(A/2/SQR(R*R-A*A/4)+PI/2
810 P3=-P2:NB=IV(28):GOSUB 2980
820 NG=MN*NF:CG=MF*FC:DG=D:LGC=CG:LGN=NG
830 RH=NV+NG:LA=RH
840 IF IV(9)<RH THEN 1110
850 AC=IV(1)/2*(CG+CV)/12:LS=AC
860 IF IV(10)<AC THEN 1150
870 REM
880 REM GAGE BITS - TRAILING DRUM
890 REM
900 CH=IV(24)-IV(1)
910 IF CH<.01 THEN 1160
920 XY=MT:MT=IV(24)-MB:MB=IV(24)-XY
930 X=(IV(1)-2*CH)/IV(1):P1=ATN(X/SQR(1-X*X))
940 P2=ATN(A/2/SQR(R*R-A*A/4)+PI/2
950 P3=P1:GOSUB 2980
960 NG=NF*MN:CG=FC*MF:DG=DG+D
970 REM
980 REM VANE BITS - TRAILING DRUM
990 REM
1000 OS=IV(5)/IV(25)
1010 DX=OS*TAN((90-IV(20)/2)*PI/180)
1020 A=AD+12/IV(13)/IV(11)
1030 NB=IV(11)*IV(25)
1040 X=(IV(1)-2*CH)/IV(1):P1=ATN(X/SQR(1-X*X))
1050 P2=ATN(A/2/SQR(R*R-A*A/4)+PI/2
1060 P3=P1:GOSUB 2980
1070 XY=MT:MT=IV(24)-MB:MB=IV(24)-XY
1080 NV=MN*NF:CV=MF*FC:DV=DV+D
1090 RH=NV+NG
1100 IF IV(9)>RH THEN 1130
1110 LT$="ADVANCE"
1120 AD=.95*AD:GOTO 430
1130 AC=IV(1)/2*(CG+CV)/12
1140 IF IV(10)>AC THEN 1160
1150 LT$="CUTTER":GOTO 1120
1160 DC=AD+12/IV(11)/IV(13)
1170 GD=DC/IV(28)*IV(12)*IV(11)
1180 CF=AD*IV(1)*IV(4)/144
1190 TP=CF*IV(19)/2000*IV(24)/IV(1)
1200 OS=IV(5)/IV(25)
1210 K=0
1220 OPEN F$(K) FOR OUTPUT AS #1
1230 PRINT #1," ", "PRINT #1," "
1240 PRINT #1,"THE DRUM ADVANCE IS ",LT$," LIMITED"
1250 PRINT #1,"THE BITS ARE ",WC," PERCENT WORN"
1260 PRINT#1," ", "
1270 A="_M_A_X_._ _C_U_T_ _D_E_P_T_H_._ _V_A_N_E_ _B_I_T_ _(_I_N_)####.##"
1280 PRINT #1, USING A;DC;
1290 A="_M_A_X_._ _C_U_T_ _D_E_P_T_H_._ _G_A_G_E_ _B_I_T_ _(_I_N_)####.##"
1300 PRINT #1, TAB(40);:PRINT #1, USING A;GD
1700 VC=100*DV/DU: GC=100-VC: DU=DU*IV(17)*(100-IV(30))/1000
1710 DU=DU*PI*IV(1)/12: DM=DU*IV(13)/7.7E+08: DT=DM/TP
1720 DS=35.3145*DM/IV(29): DS=DS*IV(31)/100
1730 A$="_V_A_N_E__C_O_N_T_R_I_B_U_T_I_O_N__(_P_C_T_______
1740 PRINT #1, USING A$; VC;
1750 A$="_G_A_G_E__C_O_N_T_R_I_B_U_T_I_O_N_(_P_C_T______
1760 PRINT #1, TAB(40);:PRINT#1,USING A$; GC;PRINT #1,
1770 IF CF>CM THEN 1820
1780 PRINT #1, TAB(3);"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1790 A$="~F_U_L_L__S_H_I_F_T__R_E_L_A_T_I_V_E__D_U_S_T__
1800 PRINT#1,TAB(3);: PRINT#1, USING A$; DT; DS
1810 PRINT#1,TAB(3);"~~
1820 PRINT #1,"":PRINT#1,TAB(18);"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*~~~
1830 PRINT #1, TAB(18)"* DUST GENERATION IS EXCESSIVE *
1840 PRINT#1,TAB(18);"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1850 PRINT #1, TAB(18)"* THE FREE VOLUME OF THE DRUM HAS BEEN *
1860 PRINT #1, TAB(18)"* EXCEEDED, EXCESSIVE RESPIRABLE DUST *
1870 PRINT #1, TAB(18)"* IS BEING CREATED BY RECIRCULATION AND *
1880 PRINT #1, TAB(18)"* CRUSHING OF THE CUT COAL *
1890 PRINT #1, TAB(18)"* CRUSHING OF THE CUT COAL *
1900 PRINT#1,"":CLOSE
1910 IF K=1 THEN 1980
1920 PRINT TAB(21)"DO YOU WISH A HARD COPY (Y/N) ";
1930 INPUT A$
1940 IF A$="N" THEN 1980
1950 IF A$="Y" THEN 1970
1960 GOTO 1920
1970 K=1;GOTO 1220
1980 OB=0;MA=0
1990 PRINT:PRINT:PRINT"### MAIN MENU ***";
2000 PRINT:PRINT"1 - RECALCULATE RELATIVE DUST VALUE";:PRINT TAB(40)"2 - MODIFY SYSTEM PARAMETERS"
2010 PRINT"3 - SPECIFY ADVANCE RATE";:PRINT TAB(40)"4 - SPECIFY SPACE/DEPTH RATIO"
2020 PRINT"5 - CHANGE WEAR CONDITION";:PRINT TAB(40)"6 - DATA FILE UTILITY"
2030 PRINT "7 - HELP INDEX";:PRINT TAB(40)"8 - TERMINATE PROGRAM"
2040 PRINT:PRINT TAB(9)"ENTER THE NUMBER FOR THE ACTION YOU WISH TO DO NEXT ";:INPUT WT
2050 WT=WT+1:ON WT GOTO 2260, 350, 2100, 2070, 2250, 2240, 2080, 2060, 2260
2060 GOSUB 3600 :GOTO 1990
2070 GOSUB 2310 :GOTO 1990
2080 GOSUB 3310 :GOTO 1990
2090 GOSUB 3510 :GOTO 1990
2100 PRINT:PRINT"### PARAMETER MODIFICATION MENU ###"
2110 PRINT PRINT "1 - MACHINE PARAMETERS"; PRINT TAB(40)"2 - SEAM PARAMETERS"
2120 PRINT "3 - OPERATOR CONTROLLABLE PARAMETERS"; PRINT TAB(40)"4 - BIT NORMAL FORCE PARAMETERS"
2130 PRINT "5 - BIT CUTTING FORCE PARAMETERS"; PRINT TAB(40)"6 - HELP INDEX"
2140 PRINT "7 - RETURN TO MAIN MENU"
2150 PRINT PRINT TAB(9)"ENTER THE NUMBER FOR THE PARAMETER GROUP YOU WISH TO MODIFY "; INPUT MT
2160 ON MT GOTO 2170, 2180, 2190, 2200, 2210, 2220, 2230
2170 N1=1:N2=13:GOSUB 2540: GOTO 2100
2180 N1=14:N2=24:GOSUB 2540: GOTO 2100
2190 N1=25:N2=34:GOSUB 2540: GOTO 2100
2200 N1=35:N2=47:GOSUB 2540: GOTO 2100
2210 N1=48:N2=60:GOSUB 2540: GOTO 2100
2220 GOSUB 4200: GOTO 2100
2230 GOTO 1990
2240 PRINT PRINT TAB(18)"ENTER WEAR CONDITION (%) - "; INPUT WC: GOTO 1990
2250 GOSUB 2470: GOTO 1990
2260 PRINT PRINT TAB(9)"ARE YOU SURE YOU WISH TO TERMINATE THE PROGRAM (Y/N) "; INPUT AS
2270 IF AS="Y" THEN 2300
2280 IF AS="N" THEN 1990
2290 GOTO 2260
2300 END
2310 PRINT PRINT TAB(9)"YOU MAY CHANGE THE ADVANCE IN UNITS OF FEET PER"
2320 PRINT PRINT TAB(9)"MINUTE, OR TONS PER SHIFT"
2330 INPUT " (0) - "; AD
2340 IF AD=0 THEN 2400
2350 CF=IV(1)~IV(4)~AD/144
2360 RETURN
2370 PRINT PRINT TAB(9)"ENTER NEW VALUE IF YOU WISH TO CHANGE FEET PER MINUTE,"
2380 PRINT PRINT TAB(9)"OTHERWISE ENTER ZERO";
2390 INPUT " (0) - "; TP
2400 IF TP=0 THEN 2310
2410 CF=2000~TP/IV(19)
2420 RETURN
2430 PRINT PRINT TAB(9)"ENTER NEW VALUE IF YOU WISH TO CHANGE TONS PER SHIFT,"
2440 PRINT PRINT TAB(9)"OTHERWISE ENTER ZERO";
2450 INPUT " (0) - "; TP
2460 IF TP=0 THEN 2310
2470 CF=2000*TP/IV(19)
2480 RETURN
2490 PRINT PRINT TAB(18)"SUGGESTED SPACE TO DEPTH RATIOS"
2500 PRINT PRINT TAB(23)"A) CLEAN COAL 2"
2510 PRINT PRINT TAB(23)"B) SEAM WITH ROCK BAND...... 1.3"
2520 PRINT PRINT TAB(23)"C) CUTTING ROCK TOP......... 1"
2530 PRINT PRINT TAB(18)"PREVIOUS S/D RATIO REQUESTED WAS"; SF; ". "
2540 PRINT PRINT TAB(18)"ENTER NEW SPACE/DEPTH RATIO - "; INPUT SF
2550 RB=1:RETURN
2560 N=0:PRINT PRINT
2570 FOR I=N1 TO N2
2560 X=35-LEN(NAM$(I))-INT(I/10)
2570 PRINT TAB(18);" - ";NAM$(I); SPC(X);IV(I)
2580 NEXT I
2590 PRINT:PRINT TAB(18)"ENTER THE NUMBER OF THE VARIABLE YOU WISH
2600 PRINT TAB(18)"TO CHANGE, USE ZERO(0) TO TERMINATE ";: INPUT " - ";J
2610 IF J=0 THEN 2650
2620 N=N+1: PC(N)=J: PRINT TAB(18)"ENTER NEW ";NAM$(J);
2630 INPUT " - ";IV(J)
2640 GOTO 2590
2650 IF N=0 THEN RETURN
2660 PRINT:PRINT TAB(18)"DO YOU WISH A HARD COPY OF THESE
2670 IF A$="Y" THEN 2700
2680 IF A$="N" THEN RETURN
2690 GOTO 2660
2700 OPEN F$(1) FOR OUTPUT AS #1
2710 FOR K=1 TO N: L=PC(K) :PRINT #1, TAB(9)"******** ";NAM$(L);
2720 PRINT #1," ":PRINT #1," ":PRINT #1," ":CLOSE:RETURN
2730 J=0
2740 FOR I=1 TO 3
2750 J=J+1 :K=K+3
2760 IF WC<=IV(K) THEN 2780
2770 NEXT I
2780 MF=IV(K+1)+WC*IV(K+2)
2790 RETURN
2800 SM=FN DP(P1)
2810 IF SM>DX THEN SM=DX
2820 IF F=1 THEN SM=SM*COS(P1)
2830 DL=FN DP(P2)
2840 IF DL>DX THEN DL=DX
2850 IF F=1 THEN DL=DL*COS(P2)
2860 SM=SM+DL ;DL=(P2-P1)/10
2870 FOR I=2 TO 8 STEP 2
2880 X=FN DP(I*DL+P1)
2890 IF X>DX THEN X=DX
2900 IF F=1 THEN X=X*COS(I*DL+P1)
2910 SM=SM+2*X :NEXT I
2920 FOR I=1 TO 9 STEP 2
2930 X=FN DP(I*DL+P1)
2940 IF X>DX THEN X=DX
2950 IF F=1 THEN X=X*COS(I*DL+P1)
2960 SM=SM+4*X :NEXT I
2970 SM=SM/30 :RETURN
2980 NF=0:FC=0:D=0
2990 IF MT=MB OR MT->CH THEN 3250
3000 REM
3010 REM CALCULATE DUST & FORCES FOR TOP COAL
3020 REM
3030 X=(IV(1)-2*MT)/IV(1);P1=ATN(X/SQR(1-X*X))
3040 F=1:GOSUB 2800
3050 NF=(IV(35)*(SIN(P2)-SIN(P1))/(P2-P1)+IV(36)*SM)*(P2-P1)/PI/2*NB
3060 F=0:GOSUB 2800
D = (IV(14) - SM * IV(15)) * (P2 - P1) / PI / 2 * NB
FC = (IV(48) - SM * IV(49)) * (P2 - P1) / PI / 2 * NB

REM CALCULATE DUST & FORCES FOR MIDDLEMAN

P2 = P1; P1 = P3
IF MB => CH THEN 3150
X = (IV(1) - 2 * MB) / IV(1); P1 = ATN(X / SQR(1 - X * X))
F = 1: GOSUB 2800
NF = NF + (IV(37) * (SIN(P2) - SIN(P1)) / (P2 - P1) + IV(38) * SM) * (P2 - P1) / PI / 2 * NB
F = 0: GOSUB 2800
D = D + (IV(14) - SM * IV(15)) * (P2 - P1) / PI / 2 * NB
FC = FC + (IV(48) - SM * IV(49)) * (P2 - P1) / PI / 2 * NB

REM CALCULATE BOTTOM COAL DUST & FORCES

P2 = P1
P1 = P3; F = 1: GOSUB 2800
NF = NF + (IV(35) * (SIN(P2) - SIN(P1)) / (P2 - P1) + IV(36) * SM) * (P2 - P1) / PI / 2 * NB
F = 0: GOSUB 2800
D = D + (IV(14) - SM * IV(15)) * (P2 - P1) / PI / 2 * NB
FC = FC + (IV(48) - SM * IV(49)) * (P2 - P1) / PI / 2 * NB
RETURN

PRINT: PRINT: PRINT: "## DATA FILE UTILITY ##"
PRINT: PRINT: "$1 - SAVE CURRENT DATA FILE"; PRINT TAB(40) "$2 - PRINT CURRENT DATA FILE"
PRINT: "$3 - READ NEW DATA FILE"; PRINT TAB(40) "$4 - RETURN TO MAIN MENU"
PRINT: PRINT: PRINT TAB(9) "$ENTER THE NUMBER FOR THE ACTION YOU WISH TO DO NEXT "$; INPUT WT
ON WT GOTO 3360, 3440, 3400, 4190
PRINT: INPUT; "ENTER SAVE DATA FILE NAME "; FI$; PRINT
OPEN "O", #2, FI$
FOR I = 1 TO 60: PRINT #2, NAMS(I); ", "; IV(I): NEXT I: CLOSE 2
GOTO 3310
PRINT: PRINT: PRINT TAB(9) "$ENTER NEW DATA FILE NAME "; INPUT FI$
OPEN "I", #1, FI$
FOR I = 1 TO 60: INPUT #1, NAMS(I), IV(I): NEXT I: CLOSE
GOTO 3310
OPEN "O", #1, "LPT1:"
A$ = "#### _ _ _
FOR I = 1 TO 60: PRINT #1, USING A$; I, NAMS(I);
PRINT #1, IV(I): NEXT I
CLOSE 1
GOTO 3310
TH = LA: IF IV(24) > IV(1) THEN TH = TH + RH
HR = LS: IF IV(24) > IV(1) THEN HR = HR + AC
KW = .746 * (AD * TH / 33000) + IV(13) * HR / 5260
KH = KW * IV(31) * 8 / 100
BL = IV(34)
3560 IF IV(22)-IV(21)=0 THEN 3590
3570 IF IV(22)-IV(21)>0 THEN 3580
3580 BL=IV(34)/SQR(IV(22)-IV(21))/SQR(4.3^IV(23)*.01-.02*IV(23))
3590 CT=IV(32)/BL+KH*IV(33)/PS :RETURN
3600 REM HELP MENU3
3610 PRINT:PRINT:PRINT"## HELP INDEX FOR MAIN MENU ###"
3620 PRINT:PRINT"1 - RECALCULATE RELATIVE DUST VALUE" ; PRINT TAB(40) "2 - MODIFY SYSTEM PARAMETERS"
3630 PRINT"3 - SPECIFY ADVANCE RATE" ; PRINT TAB(40) "4 - SPECIFY BIT SPACING"
3640 PRINT"5 - CHANGE WEAR CONDITION" ; PRINT TAB(40) "6 - SAVE DATA FILE"
3650 PRINT "7 - RETURN TO MAIN MENU"
3660 PRINT:PRINT TAB(9) "ENTER THE NUMBER FOR THE ITEM FOR WHICH YOU DESIRE HELP "; INPUT HT
3670 ON HT GOTO 3680, 3800, 3870, 3980, 4070, 4140, 4190
3680 PRINT:PRINT:PRINT"## MENU 1 - RECALCULATE RELATIVE DUST VALUE "
3690 PRINT" THIS MENU ITEM WILL CAUSE THE PROGRAM TO CALCULATE THE RELATIVE DUST VALUE"
3700 PRINT"BASED ON THE CURRENT PARAMETER VALUES AND SPECIFIED ADVANCE RATE. THE USER MAY"
3710 PRINT"PRINT A HARD COPY OF THE SUMMARY REPORT WHEN THE CALCULATIONS ARE COMPLETE. THE"
3720 PRINT"ADVANCE RATE WHICH IS CURRENTLY BEING EVALUATED WILL BE SHOWN ON THE SCREEN."
3730 PRINT"IF THE AVAILABLE HORSEPOWER IS UNABLE TO ADVANCE THE MACHINE AT THE SPECIFIED"
3740 PRINT"RATE THE PROGRAM WILL DECREASE THE ADVANCE RATE UNTIL THE REQUIRED HORSEPOWER"
3750 PRINT"IS LESS THAN THE AVAILABLE. THE DEFAULT MODE WILL CALCULATE RELATIVE DUST"
3760 PRINT"BASED ON THE MAXIMUM VOLUME OF CUT COAL THE DRUM CAN HOLD. THE PROGRAM WILL"
3770 PRINT"REVERT TO THE DEFAULT MODE AFTER A RUN SO ITEM 3 WILL NORMALLY BE USED EACH RUN."
3780 PRINT "##
3790 GOTO 3610
3800 PRINT:PRINT"## MENU ITEM 2 - MODIFY SYSTEM PARAMETERS "
3810 PRINT" THE USER CAN CHANGE ANY OF THE 60 VARIABLES USED BY THE PROGRAM TO DESCRIBE"
3820 PRINT"THE CUTTING SYSTEM THE VARIABLE LIST IS SUBDIVIDED INTO FIVE GROUPS FOR EASIER"
3830 PRINT"HANDLING , WHEN ALL THE CHANGES HAVE BEEN MADE THE USER MAY OBTAIN A HARD COPY"
3840 PRINT"OF THE CHANGES."
3850 PRINT "##
3860 GOTO 3610
3870 PRINT:PRINT:PRINT"## MENU ITEM 3 - SPECIFY ADVANCE RATE "
20

3880 PRINT " THIS OPTION ALLOWS THE USER TO SPECIFY THE ADVANCE RATE TO BE USED IN THE"
3890 PRINT "CALCULATIONS. THE ADVANCE RATE CAN BE ENTERED EITHER IN FEET PER MINUTE OR IN"
3900 PRINT "TONS PER SHIFT. TO ENTER THE ADVANCE RATE IN TONS PER SHIFT, SIMPLY ENTER ZERO"
3910 PRINT "(0) FOR THE FEET PER MINUTE PROMPT. THE PROGRAM WILL THEN ASK FOR THE ADVANCE"
3920 PRINT "RATE IN TONS PER SHIFT. IT IS IMPORTANT TO REMEMBER THAT THE PROGRAM WILL USE"
3930 PRINT "THIS SPECIFIED ADVANCE RATE FOR THE NEXT DUST CALCULATION ONLY. IT THEN REVERTS"
3940 PRINT "TO THE DEFAULT VALUE WHICH IS CALCULATED FROM THE MAXIMUM VOLUME THE DRUM CAN"
3950 PRINT "HOLD."
3960 PRINT "~~
3970 GOTO 3610
3980 PRINT:PRINT:PRINT"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MENU ITEM 4 - SPECIFY SPACE/DEPTH RATIO ~~~~~~~~~~~~~~~~~
3990 PRINT" SELECTING THIS MENU ITEM WILL CAUSE THE PROGRAM TO CALCULATE THE NUMBER OF"
4000 PRINT"VANE BITS (DATA ELEMENT 26) BASED ON THE CALCULATED DEPTH AND SPECIFIED S/D"
4010 PRINT"RATIO. IF FOR ANY REASON THE SHEARER CAN NOT ADVANCE AT THE SPECIFIED RATE THE"
4020 PRINT"NUMBER OF VANE BITS WILL BE RECALCULATED ON EACH ITERATION. THE PROGRAM WILL USE"
4030 PRINT"THIS MODE ONLY FOR THE NEXT DUST CALCULATION, AFTER WHICH IT WILL REVERT TO THE"
4040 PRINT"NUMBER OF VANE BITS SPECIFIED IN DATA ELEMENT 26."
4050 PRINT "~~
4060 GOTO 3610
4070 PRINT:PRINT:PRINT"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MENU ITEM 5 - CHANGE WEAR CONDITION ~~~~~~~~~~~~~~~~~
4080 PRINT" THE USER CAN CHANGE THE WEAR CONDITION OF BITS THROUGH THIS MENU ITEM. THE"
4090 PRINT"WEAR CONDITION IS EXPRESSED IN A PERCENTAGE, ZERO (0) BEING A NEW BIT, AND 100"
4100 PRINT"REPRESENTING A TOTALLY WORN BIT. THE WEAR CONDITION IS USED TO DETERMINE A FORCE"
4110 PRINT"MULTIPLIER FOR THE BITS."
4120 PRINT "~~
4130 GOTO 3610
4140 PRINT:PRINT:PRINT"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MENU ITEM 6 - DATA FILE UTILITY ~~~~~~~~~~~~~~~~~
4150 PRINT" THIS OPTION ALLOWS THE USER TO SAVE THE CURRENT DATA FILE, READ A NEW DATA,"
4160 PRINT"OR OBTAIN A PRINTER LISTING OF DATA FILE VALUES"
4170 PRINT "~~
4180 GOTO 3610
HELP INDEX FOR PARAMETER MODIFICATION MENU

1 - MACHINE PARAMETERS
2 - SEAM PARAMETERS
3 - OPERATOR CONTROLLABLE PARAMETERS
4 - BIT NORMAL FORCE PARAMETERS
5 - CUTTING FORCE PARAMETERS
6 - RETURN TO PARAMETER MODIFICATION MENU

ENTER THE NUMBER OF THE MENU ITEM FOR WHICH YOU REQUIRE HELP:
1: INPUT HT
GOTO 4260, 4330, 4420, 4480, 4480, 4540

THE USER CAN CHANGE ANY OF THE 13 VARIABLES WHICH DESCRIBE THE SHEARER DRUM.
THE PROGRAM HAS NO INTERNAL ERROR CHECKING ROUTINES TO INSURE THAT THE DRUM DIMENSIONS ARE CONSISTENT WITH EACH OTHER (E.G., THE WEB WIDTH IS GREATER THAN"
THE VANE WIDTH ETC.)."

THE USER CAN CHANGE ANY OF 11 SEAM AND/OR COAL PROPERTY VARIABLES. THE ROCK BAND VALUES (TOP AND BOTTOM) ARE MEASURED FROM THE TOP OF THE-MINING HORIZON.
TWO ASPECTS OF PROGRAM FLOW ARE CONTROLLED BY VARIABLES IN THIS MENU. FIRST
SETTING THE ROCK BAND TOP EQUAL TO THE ROCK BOTTOM WILL CAUSE THE PROGRAM TO
CONSIDER CUTTING ONLY COAL. SECOND, IF THE SEAM HEIGHT IS EQUAL TO THE DRUM
DIAMETER THE PROGRAM WILL BASE THE CALCULATIONS ON ONE DRUM ONLY.

THE USER CAN CHANGE ANY OF 26 FORCE AND WEAR
CHARACTERISTICS OF THE BITS
4500 PRINT"BEING USED IN THE ANALYSIS. THE VALUES FOR FORCE AND WEAR
PARAMETERS MUST BE"
4510 PRINT"OBTAINED FROM IN SITU FORCE MEASUREMENTS AND FROM LAB WEAR
TESTS."
4520 PRINT "***
***"
4530 GOTO 4200
4540 RETURN
APPENDIX B—PARAMETER DEFINITION

<table>
<thead>
<tr>
<th>Element</th>
<th>Name</th>
<th>Dimensions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drum diameter</td>
<td>in</td>
<td>Bit tip to bit tip diameter.</td>
</tr>
<tr>
<td>2</td>
<td>Top vane diameter</td>
<td>in</td>
<td>Diameter as measured to top of the vanes.</td>
</tr>
<tr>
<td>3</td>
<td>Inner drum diameter</td>
<td>in</td>
<td>Diameter of inner drum.</td>
</tr>
<tr>
<td>4</td>
<td>Web width</td>
<td>in</td>
<td>Width of cut removed by drum.</td>
</tr>
<tr>
<td>5</td>
<td>Vane width</td>
<td>in</td>
<td>Width of vane section of drum.</td>
</tr>
<tr>
<td>6</td>
<td>Vane thickness</td>
<td>in</td>
<td>Thickness of vane measured perpendicular to vane.</td>
</tr>
<tr>
<td>7</td>
<td>Vane height</td>
<td>in</td>
<td>Height of vanes, inner drum diameter plus twice vane height should equal top vane diameter.</td>
</tr>
<tr>
<td>8</td>
<td>Drum vane wrap</td>
<td>deg</td>
<td>Wrap angle of drum.</td>
</tr>
<tr>
<td>9</td>
<td>Available advancing thrust</td>
<td>lb</td>
<td>Thrust available to advance shearer drum unto coal.</td>
</tr>
<tr>
<td>10</td>
<td>Available cutter torque</td>
<td>ft-lb</td>
<td>Cutterhead torque available to turn shearer drum.</td>
</tr>
<tr>
<td>11</td>
<td>Number of starts</td>
<td>N/Ap</td>
<td>Number of starts on the drum.</td>
</tr>
<tr>
<td>12</td>
<td>Number of gauge lines</td>
<td>N/Ap</td>
<td>Number of gauge lines on drum end ring.</td>
</tr>
<tr>
<td>13</td>
<td>Drum revolutions</td>
<td>rpm</td>
<td>Drum speed.</td>
</tr>
<tr>
<td>14</td>
<td>1st dust parameter</td>
<td>N/Ap</td>
<td>Intercept of linear dust versus cut depth equation.</td>
</tr>
<tr>
<td>15</td>
<td>2d dust parameter</td>
<td>lb/in²</td>
<td>Slope of linear dust versus cut depth equation.</td>
</tr>
<tr>
<td>16</td>
<td>Compressive strength</td>
<td>lb/in²</td>
<td>Compressive strength.</td>
</tr>
<tr>
<td>17</td>
<td>Grindability index</td>
<td>N/Ap</td>
<td>Hardgrove grindability index.</td>
</tr>
<tr>
<td>18</td>
<td>Swell factor</td>
<td>N/Ap</td>
<td>Ratio of mined volume to in situ volume.</td>
</tr>
<tr>
<td>19</td>
<td>Density</td>
<td>lb/ft³</td>
<td>Density of run-of-mill product.</td>
</tr>
<tr>
<td>20</td>
<td>Breakout angle</td>
<td>deg</td>
<td>Measure of bit interaction, included angle of trench left by bit.</td>
</tr>
<tr>
<td>21</td>
<td>Rock band top</td>
<td>in</td>
<td>Distance from top of seam to top of rock band.</td>
</tr>
<tr>
<td>22</td>
<td>Rock band bottom</td>
<td>in</td>
<td>Distance from top of seam to bottom of the rock band; if set equal to rock band top program assumes there is no rock band.</td>
</tr>
<tr>
<td>23</td>
<td>Percent silica in rock band</td>
<td>pct</td>
<td>Percent silica in the rock band.</td>
</tr>
<tr>
<td>24</td>
<td>Mining height</td>
<td>in</td>
<td>Height of coal and rock being removed, if set equal to drum diameter the program will assume a single drum is being analyzed.</td>
</tr>
<tr>
<td>25</td>
<td>Bits per vane</td>
<td>N/Ap</td>
<td>Number of bits on each vane.</td>
</tr>
<tr>
<td>26</td>
<td>Bit block length</td>
<td>in</td>
<td>Length of vane bit blocks.</td>
</tr>
<tr>
<td>27</td>
<td>Bit block width</td>
<td>in</td>
<td>Width of vane bit blocks.</td>
</tr>
<tr>
<td>28</td>
<td>Number of gauge bits</td>
<td>N/Ap</td>
<td>Total gauge bits on end of drum.</td>
</tr>
<tr>
<td>29</td>
<td>Airflow</td>
<td>cfm</td>
<td>Av airflow at middle of face.</td>
</tr>
<tr>
<td>30</td>
<td>Dust suppression</td>
<td>pct</td>
<td>Percent reduction in total dust value due to secondary water suppression system.</td>
</tr>
<tr>
<td>31</td>
<td>Production time per shift</td>
<td>pct</td>
<td>Percent of shift spent cutting coal, based on an 8-hr shift.</td>
</tr>
<tr>
<td>32</td>
<td>Cost per bit</td>
<td>N/Ap</td>
<td>Cost of bit installed on drum.</td>
</tr>
<tr>
<td>33</td>
<td>Cost per kilowatt-hour</td>
<td>N/Ap</td>
<td>Cost per kilowatt-hour at face.</td>
</tr>
<tr>
<td>34</td>
<td>Bit life</td>
<td>st</td>
<td>Av bit life.</td>
</tr>
<tr>
<td>35</td>
<td>Normal force intercept</td>
<td>N/Ap</td>
<td>Intercept for normal force versus cut depth equation, cutting in coal.</td>
</tr>
<tr>
<td>36</td>
<td>Normal force slope</td>
<td>N/Ap</td>
<td>Slope for normal force versus cut depth equation, cutting in coal.</td>
</tr>
<tr>
<td>37</td>
<td>Rock band normal force intercept</td>
<td>N/Ap</td>
<td>Intercept for the normal force versus cut depth equation, cutting in rock.</td>
</tr>
<tr>
<td>38</td>
<td>Rock band normal force slope</td>
<td>N/Ap</td>
<td>Slope for the normal force versus cut depth equation, cutting in rock.</td>
</tr>
<tr>
<td>39</td>
<td>1st stage end point</td>
<td>pct</td>
<td>End of the first straight line segment of the wear function.</td>
</tr>
<tr>
<td>40</td>
<td>1st stage intercept</td>
<td>N/Ap</td>
<td>Intercept of the first straight line segment.</td>
</tr>
<tr>
<td>41</td>
<td>1st stage slope</td>
<td>N/Ap</td>
<td>Slope of the first straight line segment.</td>
</tr>
<tr>
<td>42</td>
<td>2d stage end point</td>
<td>pct</td>
<td>End of the second straight line segment of the wear function.</td>
</tr>
<tr>
<td>43</td>
<td>2d stage intercept</td>
<td>N/Ap</td>
<td>Intercept of the second straight line segment.</td>
</tr>
<tr>
<td>44</td>
<td>2d stage slope</td>
<td>N/Ap</td>
<td>Slope of the second straight line segment.</td>
</tr>
<tr>
<td>45</td>
<td>3d stage end point</td>
<td>pct</td>
<td>End of the third straight line segment of the wear function.</td>
</tr>
<tr>
<td>46</td>
<td>3d stage intercept</td>
<td>N/Ap</td>
<td>Intercept of the third straight line segment.</td>
</tr>
<tr>
<td>47</td>
<td>3d stage slope</td>
<td>N/Ap</td>
<td>Slope of the third straight line segment.</td>
</tr>
<tr>
<td>48</td>
<td>Cutting force intercept</td>
<td>N/Ap</td>
<td>Intercept for the cutting force versus cut depth equation, cutting in coal.</td>
</tr>
<tr>
<td>49</td>
<td>Cutting force slope</td>
<td>N/Ap</td>
<td>Slope for the cutting force versus cut depth equation, cutting in coal.</td>
</tr>
<tr>
<td>50</td>
<td>Rock band cutting force intercept</td>
<td>N/Ap</td>
<td>Intercept for the cutting force versus cut depth equation, cutting in rock.</td>
</tr>
<tr>
<td>51</td>
<td>Rock band cutting force slope</td>
<td>N/Ap</td>
<td>Slope for the cutting force versus cut depth equation, cutting in rock.</td>
</tr>
<tr>
<td>52</td>
<td>1st stage end point</td>
<td>pct</td>
<td>End of the first straight line segment of the wear function.</td>
</tr>
<tr>
<td>53</td>
<td>1st stage intercept</td>
<td>N/Ap</td>
<td>Intercept of the first straight line segment.</td>
</tr>
<tr>
<td>54</td>
<td>1st stage slope</td>
<td>N/Ap</td>
<td>Slope of the first straight line segment.</td>
</tr>
<tr>
<td>55</td>
<td>2d stage end point</td>
<td>pct</td>
<td>End of the second straight line segment of the wear function.</td>
</tr>
<tr>
<td>56</td>
<td>2d stage intercept</td>
<td>N/Ap</td>
<td>Intercept of the second straight line segment.</td>
</tr>
<tr>
<td>57</td>
<td>2d stage slope</td>
<td>N/Ap</td>
<td>Slope of the second straight line segment.</td>
</tr>
<tr>
<td>58</td>
<td>3d stage end point</td>
<td>pct</td>
<td>End of the third straight line segment of the wear function.</td>
</tr>
<tr>
<td>59</td>
<td>3d stage intercept</td>
<td>N/Ap</td>
<td>Intercept of the third straight line segment.</td>
</tr>
<tr>
<td>60</td>
<td>3d stage slope</td>
<td>N/Ap</td>
<td>Slope of the third straight line segment.</td>
</tr>
</tbody>
</table>

N/Ap Not applicable. ¹Not used in current version of program. ²From laboratory and/or In-Seam Tester data.
APPENDIX C—SAMPLE DATA

<table>
<thead>
<tr>
<th>Element</th>
<th>Name</th>
<th>Value</th>
<th>Element</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drum diameter</td>
<td>66</td>
<td>31</td>
<td>Production time per shift</td>
<td>pct</td>
</tr>
<tr>
<td>2</td>
<td>Top vane diameter</td>
<td>60</td>
<td>32</td>
<td>Cost per bit</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inner drum diameter</td>
<td>34</td>
<td>33</td>
<td>Cost per kilowatt-hour</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Web width</td>
<td>38.5</td>
<td>34</td>
<td>Bit life</td>
<td>st</td>
</tr>
<tr>
<td>5</td>
<td>Vane width</td>
<td>34.5</td>
<td>35</td>
<td>Normal force intercept</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Vane thickness</td>
<td>2</td>
<td>36</td>
<td>Normal force slope</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vane height</td>
<td>13</td>
<td>37</td>
<td>Rock band normal force intercept</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Drum vane warp</td>
<td>220</td>
<td>38</td>
<td>Rock band normal force slope</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Available advancing thrust</td>
<td>6,000</td>
<td>39</td>
<td>1st stage end point</td>
<td>pct</td>
</tr>
<tr>
<td>10</td>
<td>Available cutter torque</td>
<td>50,000</td>
<td>40</td>
<td>1st stage intercept</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Number of starts</td>
<td>3</td>
<td>41</td>
<td>1st stage slope</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Number of gauge lines</td>
<td>5</td>
<td>42</td>
<td>2d stage end point</td>
<td>pct</td>
</tr>
<tr>
<td>13</td>
<td>Drum revolutions</td>
<td>34</td>
<td>43</td>
<td>2d stage intercept</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1st dust parameter</td>
<td>5.0×10^7</td>
<td>44</td>
<td>2d stage slope</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2d dust parameter</td>
<td>2.5×10^7</td>
<td>45</td>
<td>3d stage end point</td>
<td>pct</td>
</tr>
<tr>
<td>16</td>
<td>Compressive strength</td>
<td>3,061</td>
<td>46</td>
<td>3d stage intercept</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Grindability index</td>
<td>46</td>
<td>47</td>
<td>3d stage slope</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Swell factor</td>
<td>1.45</td>
<td>48</td>
<td>Cutting force intercept</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Density</td>
<td>115</td>
<td>49</td>
<td>Cutting force slope</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Breakout angle</td>
<td>100</td>
<td>50</td>
<td>Rock band cutting force intercept</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Rock band top</td>
<td>60</td>
<td>51</td>
<td>Rock band cutting force slope</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Rock band bottom</td>
<td>78</td>
<td>52</td>
<td>1st stage end point</td>
<td>pct</td>
</tr>
<tr>
<td>23</td>
<td>Silica in rock band</td>
<td>75</td>
<td>53</td>
<td>1st stage intercept</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Mining height</td>
<td>96</td>
<td>54</td>
<td>1st stage slope</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Bits per vane</td>
<td>7</td>
<td>55</td>
<td>2d stage end point</td>
<td>pct</td>
</tr>
<tr>
<td>26</td>
<td>Bit block length</td>
<td>4</td>
<td>56</td>
<td>2d stage intercept</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Bit block width</td>
<td>3</td>
<td>57</td>
<td>2d stage slope</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Number of gauge bits</td>
<td>18</td>
<td>58</td>
<td>3d stage end point</td>
<td>pct</td>
</tr>
<tr>
<td>29</td>
<td>Airflow</td>
<td>27,000</td>
<td>59</td>
<td>3d stage intercept</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Dust suppression</td>
<td>33</td>
<td>60</td>
<td>3d stage slope</td>
<td></td>
</tr>
</tbody>
</table>

* U.S. GOVERNMENT PRINTING OFFICE: 811-012/00,011

INT.BU.OF MINES,PGH.,PA. 28804