1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

1duosnuey Joyiny

WEALTY 4
of %,

SERVIC

A
u
Yeyvaaa

/ HHS Public Access

Author manuscript
J Infect Dis. Author manuscript; available in PMC 2021 February 14.

Guillain-Barré Syndrome After High-Dose Influenza Vaccine
Administration in the United States, 2018-2019 Season

Silvia Perez-Vilarl:2, Mao Hu?, Eric Weintraub3, Deepa Aryal:2, Bradley Lufkin?, Tanya
Myers3, Emily Jane Wool, An-Chi Lo?, Steve Chu?, Madeline Swarr2, Jiemin Liao?, Michael
Wernecke2, Tom MaCurdy?°, Jeffrey Kelman#, Steven Anderson?, Jonathan Duffy3, Richard
A. Forsheel

1Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring,
Maryland, USA,

2Acumen LLC, Burlingame, California, USA,
SImmunization Safety Office, Centers for Disease Control and Prevention, Atlanta, Georgia, USA,
4Centers for Medicare & Medicaid Services, Washington, DC, USA,

SDepartment of Economics, Stanford University, Stanford, California, USA

Abstract

Background.—The Vaccine Safety Datalink (VSD) identified a statistical signal for an increased
risk of Guillain-Barré syndrome (GBS) in days 1-42 after 2018-2019 high-dose influenza vaccine
(I1V3-HD) administration. We evaluated the signal using Medicare.

Methods.—We conducted early- and end-of-season claims-based self-controlled risk interval
analyses among Medicare beneficiaries ages =65 years, using days 8-21 and 1-42 postvaccination
as risk windows and days 43-84 as control window. The VVSD conducted chart-confirmed
analyses.

Results.—Among 7 453 690 11VV3-HD vaccinations, we did not detect a statistically significant
increased GBS risk for either the 8- to 21-day (odds ratio [OR], 1.85; 95% confidence interval
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[CI], 0.99-3.44) or 1- to 42-day (OR, 1.31; 95% CI, 0.78-2.18) risk windows. The findings from
the end-of-season analyses were fully consistent with the early-season analyses for both the 8- to
21-day (OR, 1.64; 95% CI, 0.92-2.91) and 1- to 42-day (OR, 1.12; 95% CI, 0.70-1.79) risk
windows. The VSD’s chart-confirmed analysis, involving 646 996 11V3-HD vaccinations, with 1
case each in the risk and control windows, yielded a relative risk of 1.00 (95% CI, 0.06-15.99).

Conclusions.—The Medicare analyses did not exclude an association between 11VV3-HD and
GBS, but it determined that, if such a risk existed, it was similar in magnitude to prior seasons.
Chart-confirmed VSD results did not confirm an increased risk of GBS.

Keywords

Guillain-Barré syndrome; influenza vaccines; self-controlled risk interval; sequential tests; vaccine
safety

An association between influenza vaccination and Guillain-Barré syndrome (GBS) was first
noticed during the 1976 swine influenza vaccination campaign in the United States [1-3].
Since then, several studies have assessed the GBS risk after influenza vaccination and found
either no risk or small risk increases representing approximately 1 to 3 additional cases per
million vaccine recipients [4-17]. The US Food and Drug Administration (FDA) and the
Centers for Medicare & Medicaid Services (CMS), in collaboration with Acumen LLC, have
used claims data to actively monitor the GBS risk after influenza vaccination for every
influenza season since 2008 [9, 10, 15-19]. The Vaccine Safety Datalink (VSD), a
collaborative project between the Centers for Disease Control and Prevention (CDC) and 8
integrated healthcare organizations, monitors GBS after influenza vaccination since 2009,
using electronic health records [20, 21].

In 2009, the FDA licensed the high-dose influenza vaccine ([11VV3-HD] Fluzone High-Dose)
for use in individuals ages =65 years using accelerated approval regulations [22]. The 11V3-
HD is an injectable inactivated trivalent egg-based influenza vaccine containing 4 times
more influenza hemagglutinin antigen than standard-dose vaccines. Some studies have
shown higher effectiveness for 11V3-HD compared with standard-dose vaccines for the
prevention of influenza-related medical encounters, hospitalizations, and death in most
seasons [23-25]. During the 2015-2016 and 2016-2017 seasons, FDA and CMS identified a
slightly elevated GBS risk for 11VV3-HD in days 8-21 postvaccination, consistent with the
risk noted in the US package insert [15]; however, the 2017-2018 surveillance did not
identify an elevated risk [16].

Although in prior seasons the VSD had not detected an increased GBS risk after 11VV3-HD, it
did identify a statistical signal early in the 2018-2019 season. The FDA and CMS, in
collaboration with the CDC, rapidly investigated the GBS risk after 2018-2019 11\VV3-HD
and all seasonal influenza vaccinations combined, using the Medicare database, a larger
database for the target study population than the ones available to the VSD. This manuscript
describes the results of these investigations.

J Infect Dis. Author manuscript; available in PMC 2021 February 14.
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METHODS
Rapid Cycle Analysis in the Vaccine Safety Datalink

The VSD conducted rapid cycle analysis [26] to sequentially monitor, on a weekly basis, the
risk of GBS and other selected adverse events among individuals ages =6 months vaccinated
with any seasonal influenza vaccine from July 1, 2018 through April 3, 2019, using current-
vs-historical and self-controlled risk interval (SCRI) designs [27, 28]. The methods we
describe here focus on the investigation of GBS risk in days 1-42 after 11V3-HD
administration among individuals ages =65 years.

Data Sources (Vaccine Safety Datalink)

The analyses used data from the following VSD sites: HealthPartners Institute (Minneapolis,
MN), Marshfield Clinic Research Institute (Marshfield, WI), and Kaiser Permanente of the
following: Colorado (Denver), Northwest (Portland, OR), Northern California (Oakland,
CA), Southern California (Pasadena, CA), and Washington (Seattle, WA).

Exposure and Outcome Definition (Vaccine Safety Datalink)

The VSD used electronic vaccine registries to capture influenza vaccine administrations
using the current HL7 standard CVX codes (Supplementary Material S1) [29]. Where
appropriate, the VSD used the /nternational Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) code 357.0 and the /nternational Classification of
Diseases, Tenth Revision, Clinical Modification (1ICD-10-CM) code G61.0, to identify all
first-in-365-days potential GBS cases from the inpatient, outpatient clinic, and emergency
room settings. To account for partially elapsed risk windows and late-arriving data, the VSD
adopted previously described methods [30, 31]. Because the VVSD identified a statistical
signal, they conducted a per-protocol chart review of all potential GBS cases to confirm
disease onset and classify cases according to the GBS case definition developed by the
Brighton Collaboration (BC) [32].

Statistical Analyses (Vaccine Safety Datalink)

To provide real-time monitoring of GBS risk, the VSD used a Poisson-based maximized
sequential probability ratio test (maxSPRT) stratified by site to compare the observed
number of GBS cases in the 1-42 days after 11\VV3-HD administration with the number
expected based upon historical rates of GBS occurring within 1-42 days after administration
of trivalent and quadrivalent influenza vaccines in prior seasons (2012-2016) [30, 33]. The
VSD also conducted SCRI analyses using a sequential method binomial maxSPRT [30, 33],
comparing the number of GBS cases in days 1-42 postvaccination (risk window) with that
in days 43-84 postvaccination (control window). For both the Poisson and SCRI analyses,
the VSD defined a statistical signal when the log-likelihood ratio test statistic exceeded the
prespecified critical value [20, 21]. After chart review, the VSD conducted an end-of-season
nonsequential SCRI analysis comparing the number of confirmed GBS cases identified in
the risk window versus that in the control window.

J Infect Dis. Author manuscript; available in PMC 2021 February 14.
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Self-Controlled Risk Interval Analyses in Medicare

After the VSD statistical signal, the FDA, CMS, and Acumen LLC, in collaboration with the
CDC, to conduct a per-protocol early-season SCRI analysis [34] to assess the GBS risk after
I1\V3-HD and all seasonal influenza vaccines combined administered from August 11, 2018
through November 9, 2018, to Medicare beneficiaries ages =65 years enrolled in Medicare
Fee-for-Service (FFS) Parts A (hospitalization) and B (outpatient medical care) (Figure 1).
As further evaluation of the early season results, we conducted a per-protocol end-of-season
SCRI analysis including influenza vaccinations administered through June 29, 2019
(Supplementary Material S2).

Data Sources (Medicare)

We used Medicare enrollment and claims data [35]. In the early-season analyses, we
included claims observed through March 15, 2019 (week 31), which allowed us to capture
approximately 84% of 11V3-HD administrations with approximately 96% claims maturity
(probability of observing GBS cases in the control window given that they had occurred),
using November 9, 2018 as vaccination cutoff date (Supplementary Material S3). In the end-
of-season analyses, we included claims observed through September 27, 2019 (including
approximately 100% of 11\V3-HD administrations with approximately 99.9% claims
maturity).

Exposure and Outcome Definition (Medicare)

We defined exposure as the beneficiary’s first influenza vaccination within the study period,
and we defined an incident GBS case as a vaccinated beneficiary discharged from a hospital
during days 1-84 postvaccination with a GBS diagnosis (ICD-10-CM code G61.0) in first
diagnosis position. We required continuous enrollment for 183 days before vaccination
through the end of the control window or death, whichever occurred earlier (Supplementary
Material S4). If a beneficiary died before the end of the observation period, we included the
entire planned person-time of the individual. We excluded beneficiaries if there was one of
the following: (1) a GBS diagnosis in any position/setting during the 183 days
prevaccination or on the influenza vaccination date or (2) a GBS diagnosis in any setting
more than 7 days before the primary-coded GBS hospitalization. To minimize measurement
error, we assigned each GBS case’s “earliest onset date” as either the hospitalization date or
as the date of the first GBS claim in any position/setting in the 7 days prior [16]. We used
Healthcare Common Procedure Coding System and Current Procedural Terminology codes
from outpatient claims to identify administered vaccines (Supplementary Material S5 and
S6). We also searched Part D (prescription drug coverage) claims for concomitant vaccines
using National Drug Codes (Supplementary Material S7).

Statistical Analyses (Medicare)

We completed crude and seasonality-adjusted SCRI analyses [23, 24, 36] using claims-based
GBS cases. We used days 8-21 and 1-42 postvaccination as primary and secondary risk
windows, respectively, and days 43-84 postvaccination as control window. We selected days
8-21 postvaccination as primary risk window because prior studies’ findings showed higher
risk in this window [1, 10, 11, 15, 16]. For the early-season analyses, we also used imputed

J Infect Dis. Author manuscript; available in PMC 2021 February 14.
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chart-confirmed cases. The imputed quantitative bias analysis sampled chart-confirmed GBS
cases with probability equal to the positive predictive value (PPV) of 71.2%, derived from
the medical record review we conducted during the 2015-2016 influenza season [15]; odds
ratio (OR) estimates were combined after repeating the imputation process 1000 times [37].
To adjust for seasonality, we used the CDC’s virologic surveillance data [38]. We used
conditional logistic regression to calculate the ORs with 95% confidence intervals (ClIs),
offset by length of observation time. We calculated attributable risk (AR) as the difference in
the number of GBS cases observed in the risk and control windows, divided by the total
number of vaccinated beneficiaries. Details on the calculation of the ORs, AR, seasonality
adjustment, and PPV-imputed quantitative bias analysis are described elsewhere [16, 23, 39].
Our power calculations showed that our early analyses would have 99% power to detect an
OR of 4.0, 92% power to detect an OR of 3.0, and 56% power to detect an OR of 2.0 in the
primary risk window (Supplementary Material S8.1).

We conducted the Medicare study as part of the SafeRx Project, a joint initiative of CMS
and the FDA [40]. The Research Involving Human Subjects Committee of the FDA’s Center
for Biologics Evaluation and Research approved the surveillance. For the VSD study, the
institutional review boards of each participating site approved the study. The analyses were
conducted using R 3.3.4 (R Foundation for Statistical Computing, Vienna, Austria) and SAS
9.4 (SAS Institute Inc., Cary, NC).

Rapid Cycle Analysis in the Vaccine Safety Datalink

A total of 646 996 (45.9%) members received I1VV3-HD, with a median age of 73 years
(interquartile range [IQR], 69-79 years). Descriptive statistics by vaccine type are shown in
Table 1.

Self-Controlled Risk Interval Analysis

During the week of December 9, 2018, the VVSD detected a statistical signal for GBS after
I1\V3-HD using the binomial SCRI method. By then, the VSD sites had administered 614
200 doses of 11V3-HD and observed 5 GBS cases within days 1-42 after 11\VV3-HD versus
zero cases in the 43- to 84-day comparison window (Table 2). This resulted in a relative risk
(RR) of 11 and a corresponding log-likelihood ratio (LLR) of 3.47 that exceeded the critical
value of 3.39.

As of April 3, 2019 (final VSD surveillance week), there were 9 potential GBS cases within
1-84 days after 645 362 11\V3-HD doses; 8 cases occurred during days 1-42 postvaccination,
and 1 case occurred during days 43-84 postvaccination. After chart review, the VSD
confirmed 1 GBS case in the risk window (onset on day 1), classified as BC Level 2, and 1
in the control window (onset on day 61), classified as BC Level 1. The VSD ruled out other
7 cases because they either were historical cases (n = 2), had alternative diagnoses (n = 2),
symptom onset before or on vaccination day (n = 2), or lack of evidence for a GBS diagnosis
(n = 1). The end-of-season nonsequential chart-confirmed SCRI analysis involved 646 996
I1'V3-HD vaccinations and yielded a RR of 1.00 (95% CI, 0.06-15.99) (Tables 1 and 2).

J Infect Dis. Author manuscript; available in PMC 2021 February 14.
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Current-Versus-Historical Poisson Analysis

During the week in which the VSD identified a statistical signal using the SCRI method
(December 9, 2018), the current-vs-historical Poisson analysis did not signal. Because of the
more stringent data-lag adjustment required when implementing the binomial SCRI method,
there was 1 additional case in the current-vs-historical Poisson, which led to 6 cases
identified in the 42-day risk window vs 3.89 expected cases. The RR was 1.54 and the LLR
was 0.49, which did not exceed the critical value of 3.03. The end-of-season current-vs-
historical Poisson analysis did not signal after observing 8 cases versus an expected number
of 4.99 cases, with a corresponding RR of 1.60 and LLR of 0.76.

Self-Controlled Risk Interval Analyses in Medicare

For the early-season analyses, the study population included 12 159 346 influenza-
vaccinated beneficiaries. Of them, 7 453 690 (61.3%) received 11VV3-HD. Among those
vaccinated with 11'V3-HD, the median age was 75 years (IQR, 70-81 years), 58% were
women, and 91% did not receive other vaccinations in the same day. The end-of season
study population included 14 437 945 beneficiaries vaccinated with any influenza vaccine;
of them, 8 667 640 (60.0%) received 11VV3-HD. Descriptive statistics by vaccine type are
shown in Table 3 and Supplementary Material S9.

Primary Risk Window (8—-21 Days Postvaccination)

For the early-season analyses, we identified 16 GBS claims in the primary risk window after
I1'V3-HD and 26 in the control window (Figure 2), resulting in an OR of 1.85 (95% ClI,
0.99-3.44) and an AR of 0.98 (95% CI, —0.02 to 1.82) per million influenza-vaccinated
beneficiaries (Table 4). We obtained an OR of 1.84 (95% ClI, 0.78-4.31) in the PPV-imputed
quantitative bias analysis. For the end-of-season analysis, we identified 18 and 33 GBS
claims after 11\VV3-HD in the primary risk and control windows, respectively, resulting in an
OR of 1.64 (95% CI, 0.92-2.91) and an AR of 0.81 (95% CI, —0.14 to 1.63) per million
influenza-vaccinated beneficiaries (Figure 3; Table 4).

For the early-season analyses, we obtained an OR of 1.57 (95% CI, 0.94-2.63) for all
influenza vaccines combined and an AR of 0.66 (95% CI, —0.09 to 1.33) per million
vaccinated beneficiaries; the OR we obtained in the PPV-imputed quantitative bias analyses
was 1.56 (95% ClI, 0.78-3.15). In the end-of-season analysis, we observed an OR of 1.58
(95% Cl, 1.00-2.51) and an AR of 0.72 (95% Cl, 0.00-1.36) per million influenza-
vaccinated beneficiaries.

Secondary Risk Window (1-42 Days Postvaccination)

For the early-season analyses, we identified 34 GBS claims in the secondary risk window
after 11\V3-HD vaccination and 26 claims in the control window (Figure 2), resulting in an
OR of 1.31 (95% ClI, 0.78-2.18) and an AR of 1.07 (95% CI, —0.97 to 2.99) per million
influenza-vaccinated beneficiaries (Table 4). We obtained an OR of 1.31 (95% ClI, 0.65-
2.61) in the PPV-imputed quantitative bias analyses. For the end-of-season analysis, we
identified 37 and 33 GBS claims in the secondary risk and control windows, respectively
(Figure 3), resulting in an OR of 1.12 (95% CI, 0.70-1.79) and an AR of 0.46 (95% ClI,
-1.42 to 2.29) per million influenza-vaccinated beneficiaries.

J Infect Dis. Author manuscript; available in PMC 2021 February 14.
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For the early-season analyses for all seasonal vaccines combined, we identified 52 GBS
claims in the risk window and 42 in the control window (Figure 2), yielding an OR of 1.24
(95% Cl, 0.82-1.86) and an AR of 0.82 (95% CI, —0.74 to 2.32) per million vaccinations.
The PPV-imputed quantitative bias analyses produced similar results (Table 4). In the end-
of-season analysis, we obtained an OR of 1.19 (95% ClI, 0.82-1.71) and an AR of 0.69 (95%
Cl, -0.77 to 2.11) per million influenza-vaccinated beneficiaries. Seasonality adjustments
did not appreciably change any of our estimates (Supplementary Material S10).

DISCUSSION

The VSD and Medicare analyses did not find statistically significant increased GBS risks for
I1\V3-HD during the 2018-2019 season. The VSD rapid cycle analyses found that the LLR
exceeded the critical value for 11\VV3-HD, but not for other influenza vaccines, and only when
using binomial SCRI methods. When the VVSD detected the statistical signal, the FDA,
CMS, and CDC rapidly refined it in a larger database. In the early-season analyses using
Medicare data, we found nonstatistically significant slightly elevated ORs, similar in
magnitude to those observed in prior seasons [15, 16]. The findings from the Medicare end-
of-season analyses were consistent with those from the early-season analyses. The chart
review in the VSD confirmed 1 GBS case in the risk window and 1 in the control window,
for an RR of 1.0; thus, the VSD did not confirm the initial statistical signal. This may be
explained because the VSD case definition for GBS was highly sensitive. The Medicare
analyses including all 2018-2019 influenza vaccines combined found slightly elevated
borderline statistically significant ORs in the 8- to 21-day risk window. As in prior seasons
[1, 10, 11, 15, 16], in the 8- to 21-day risk window we identified a GBS rate slightly higher
than that in the 42-day risk window.

Given that most seasonal influenza vaccines are administered during a short period early in
the season, the rapid identification and evaluation of safety signals, as done here, can inform
timely regulatory and public health decision making. The results of our early-season
Medicare analyses may be sensitive to our choice of an early cutoff date; we restricted
analyses to beneficiaries vaccinated up to November 9, 2018, so GBS cases in both risk and
control windows would have a high probability of being observed by March 15, 2019. By
this vaccination cutoff, approximately 84% of vaccinations were expected to have occurred,
which translated into an SCRI analysis with approximately 81% of all the control window
GBS cases for the season. We chose the November 9, 2018 cutoff of as a trade-off between
bias and precision. An earlier cutoff date would have included fewer vaccinations with
higher claims maturity, resulting in less biased but more imprecise estimates. For the early-
season analyses, we did not conduct chart review, which would have added substantial time
to the effort, relying instead on the relatively high (71.2%) PPV of the ICD-10-CM GBS
diagnosis code in primary discharge diagnosis position obtained during our 2015-2016
season investigation [15]. It is reassuring that the results of the VSD’s chart-confirmed
nonsequential SCRI analyses were consistent with the Medicare results. In addition, we
performed chart-confirmed end-of-season SCRI analyses in the Medicare database. Results
including all influenza vaccines were consistent with our main analyses (Supplementary
Material S11); we had insufficient power for the 11VV3-HD analyses.

J Infect Dis. Author manuscript; available in PMC 2021 February 14.
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The VSD and Medicare FFS data have complementary capabilities. The VSD population
includes more than 9 million individuals annually [27]. Among them, approximately 5.5
million received 2018-2019 influenza vaccinations [28]. Because it includes all ages, VSD
is able to perform surveillance among persons <65 years of age, few of whom are enrolled in
Medicare. The VSD also includes Medicare beneficiaries enrolled in Part C (Medicare
Advantage), representing over one third of the overall Medicare population (Part C
beneficiaries are not included in the Medicare FFS data used by the FDA-CMS
collaboration). However, given that multiple influenza vaccines are indicated for use in
different age groups in the United States, VSD surveillance may be insufficiently powered to
assess small associations between GBS and some seasonal influenza vaccines. However, it
provides direct access to medical records, essential for case confirmation. For a rare
condition such as GBS, the VVSD could detect an overall increased GBS risk of 1 per million
within 10 weeks of the start of vaccination [41]. In contrast, the Medicare database contains
a much larger and uniform population.

It includes >60 million individuals, with >17 million FFS influenza vaccine recipients,
providing ample power for evaluating rare outcomes. It is particularly well suited for
assessing vaccine safety because it is the largest cohort of US older adults with individually
linked data containing demographic, diagnostic, and vaccination information. Furthermore,
it is a single-payer system, which should decrease data source heterogeneity. However, one
limitation is that there may be underascertainment of vaccinations administered outside of
Medicare [42]. Thus, we restricted our analyses to influenza-vaccinated FFS beneficiaries.
An additional potential limitation for our Medicare analyses is that we only included cases
with hospital discharge diagnoses of GBS in the primary position, which could have led to
an underestimation of GBS cases. However, GBS is a well defined acute disease with
serious clinical sequelae that usually requires hospitalization rapidly [10]. In addition, prior
FDA-CMS work found that the PPV of the ICD-9-CM diagnosis code for GBS in secondary
diagnosis positions was significantly lower (7.8%) than in the first diagnosis position
(68.2%) [10]. Another limitation is that, by defining the inclusion criteria with respect to
vaccination (as opposed to GBS onset), we could have biased the analysis towards finding
more cases in the risk window. We used this requirement because of the importance of
including beneficiaries as comparable as possible with respect to their GBS experience
before vaccination date, given the known association of GBS with prior influenza
vaccinations [1, 9-12, 14, 15, 22]. In addition, GBS is a very rare disease, and recurrent
GBS is even more rare. However, to address this concern, we conducted a sensitivity
analysis for which we required 183 days of clean period before the GBS hospitalization, thus
standardizing the clean period requirement for all cases. The results of this analysis (data not
shown) exactly matched results using our original case definition. Moreover, because of
power limitations, our protocol did not include an analysis restricted to GBS cases without
respiratory or gastrointestinal illness within 42 days before GBS onset, which have been
shown as potential confounders in prior studies [43]. However, as part of the chart-
confirmed supplementary analyses, we noted a history of antecedent respiratory or
gastrointestinal illness within 42 days before onset of GBS symptoms in 23 (36%) of 64
chart-confirmed GBS cases. Although numbers were small, we additionally determined
there was a potential imbalance in the number of such cases in the risk and control periods

J Infect Dis. Author manuscript; available in PMC 2021 February 14.
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(data not shown). The impact of these confounders should be further investigated in
subsequent multiseason analyses.

CONCLUSIONS

This collaborative effort, in which the VSD detected an early statistical signal that was
rapidly evaluated in both VSD and Medicare, did not exclude an association between 2018—
2019 11V3-HD and GBS, but it determined that, if such risk existed, it was low, similar in
magnitude to that observed in prior seasons [15, 16]. This reassuring finding highlights the
benefits of providing timely GBS surveillance results and the robustness of federal
surveillance efforts. Our findings were consistent with the US package insert of all influenza
vaccines that warn—although with inconclusive evidence—of a minimally increased GBS
risk. Despite slightly elevated GBS risk estimates for some seasons, the benefits of influenza
vaccines in preventing influenza morbidity and mortality heavily outweigh these potential
GBS risks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Medicare Fee-for-Service population number of overall seasonal and high-dose influenza

vaccine administrations in the early-season surveillance population by vaccination week.
SCRI, self-controlled risk interval.
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Figure 2.
Medicare Fee-for-Service population early-season self-controlled risk interval analysis,

interval between influenza vaccination and Guillain-Barré syndrome diagnosis, beneficiaries
ages =65 years, high-dose and all seasonal influenza vaccines combined; risk windows are
8-21 and 1-42 days postvaccination; control window is 43-84 days postvaccination.
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Figure 3.
Medicare Fee-for-Service population end-of-season self-controlled risk interval analysis,

interval between influenza vaccination and Guillain-Barré syndrome diagnosis, beneficiaries
ages =65 years, high-dose and all seasonal influenza vaccines combined; risk windows is 8-
21 and 1-42 days postvaccination; control window is 43-84 days postvaccination.
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