Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Predicting flow characteristics of a lixiviant in a fractured crystalline rock mass

Filetype[PDF-3.19 MB]


  • English

  • Details:

    • Personal Author:
    • Description:
      "In situ metals research to characterize the hydrology of a fractured crystalline rock mass in underground mine stopes is discussed. The objective of this study was to find the potential direction, velocity, and concentrations of a lixiviant plume, should leaching solvents (lixiviants) escape from a test stope. The sudy was conducted by the U.S. Bureau of Mines at the Colorado School of Mines Experimental Mine in Idaho Springs, CO. Since this was a method evaluation site, the lixiviant was simulated using water and acceptable tracers. The site is located in moderately fractured Precambrian migmatite-biotite gneisses of the Idaho Springs Formation. The data required for the characterization were obtained from geologic maps and reports, core logs, and air and water permeability test. The acquired data were analyzed and applied to a computer model that calculated the characteristics of a lixiviant plume originating at the stope. A sensitivity analysis showed that dispersivity, ground water velocity, fracture porosity, and fracture spacing had notable effects on the concentration of the plume. Assuming a saturated rock mass, the lixiviant plume would disperse to undetectable levels in a very short time because of a high fracture density at the mine site." - NIOSHTIC-2

      NIOSHTIC no. 10003891

    • Document Type:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov