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Abstract

Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have 

failed to improve survivability in septic patients. The purpose of this present study is to evaluate 

whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced 

severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. 

Administration of a single dose (0.5 mg/kg) of CeO2NPs intravenously to septic rats significantly 

improved survival rates and functioned to restore body temperature, respiratory rate and blood 

pressure towards baseline. Treatment-induced increases in animal survivability were associated 

with decreased hepatic damage along with reductions in serum cytokines/chemokines, and 

diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to 

CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) 

which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase 

(iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of 

activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that 

CeO2NPs may be useful as a therapeutic agent for sepsis.
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1. Introduction

Severe sepsis is associated with a systemic inflammatory response syndrome (SIRS) that is 

characterized by widespread elevations in reactive oxygen species (ROS) and increased 

levels of circulating tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). The 

development of SIRS is a primary cause of multiple-organ dysfunction syndrome (MODS) 

and death in septic patients [1,2]. Although the SIRS response can be elicited by 

mycobacteria, parasites, fungus, and viruses it is thought that exposure to gram negative 

bacteria and lipopolysaccharide (LPS) is the predominant cause [3,4]. Amongst the different 

organ systems affected by sepsis, the liver appears to be amongst the first organs affected as 

the liver macrophages (Kupffer cells) have been shown to play a key role in the removal of 

xenobiotics from the blood [5]. It is well documented that LPS stimulation of the Kupffer 

cells results in the release various cytokines/chemokines including TNF-α, IL-6, HMGB1, 

and nitric oxide (NO) [6], which have been shown to induce SIRS development [7,8].

The factors regulating the release of cytokines from macrophages are not fully understood 

although it has been hypothesized that this process is regulated, at least in part, by increases 

in cellular ROS which has led some to hypothesize that the use of antioxidants may be 

valuable for the treatment of sepsis [9–11]. Although promising in animals, the vast majority 

of interventional studies examining the effects of antioxidant therapies have been largely 

ineffective in clinical trials [12]. The reasons for these failures are currently unknown and 

likely complex in nature but may be related to the fact that the treatment of sepsis is 

oftentimes hindered by the sepsis-associated circulatory abnormalities, poor bio-distribution, 

and individual differences in the septic presentation. In addition, the use of traditional 

pharmacological approaches can be limited by the need for multiple daily dosing since each 

anti oxidant molecule is typically capable of scavenging only one free radical [13]. In an 

effort to overcome these limitations, we sought to develop a treatment that would not only 

target the liver Kupffer cells which are responsible for initiating SIRS development, but one 

that was also capable of exhibiting continued activity over time.

Ceria is a rare earth element of the lanthanide series that is used in automobile catalytic 

converters to convert carbon monoxide to carbon dioxide [14]. In its oxide form, ceria can 

transition between Ce3+ and Ce4+ oxidative states which can allow for auto regenerative 

redox cycling and free radical scavenging [13]. Although the use of CeO2 in nanoparticle 

form for biomedical applications awaits further development, previous reports have 

indicated that these particles possess antioxidative activity [14] and that they tend to 

accumulate in the Kuppfer cells when injected into the systemic circulation of the laboratory 

rat [15]. On the basis of these data, we hypothesized that the systemic administration of 

CeO2 nanoparticles would be associated with diminished Kupffer cell cytokine/chemokine 

release and decreased SIRS development which would result in improved animal survival 

following sepsis insult.
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2. Material and methods

2.1. Cerium oxide nanoparticle preparation and characterization

The CeO2 nanoparticles were purchased from Sigma–Aldrich (USA) and characterized as 

outlined. Stock suspensions (3.5 mg/ml) were prepared in ddH2o by sonication (600 W for 2 

min) using a Vibra Cell Sonicator (Sonics & Materials, Inc.) at room temperature and 

characterized. Dynamic light scattering (DLS) was performed to estimate the mean size of 

CeO2 NPs in suspension using LB-550 DLS particle size analyzer (Horiba Scientific, 

Edison, NJ). Naked particle size of the CeO2 NPs was characterized by transmission 

electron microscopy (TEM) using JEOL JEM 1200Ex. X-ray diffraction (XRD) was 

performed using a Scintag XDS 2000 powder diffractometer. Scanning transmission 

electron microscopy (STEM) images were acquired using a JEM-ARM200CF (JEOL, 

Japan) operated at 200 keV. The oxidative state of cerium was analyzed by X-ray 

photoelectron spectroscopy (XPS) using a PHI ESCA 5400 spectrophotometer.

2.2. Animal preparation and experimental design

Animals were prepared for experiments as detailed in the Selvaraj et al. [16] and were 

randomly assigned to one of four groups. The control group (n = 6) received 1.5 ml of 

endotoxin free water by i.p. while the CeO2 nanoparticle treated group (n = 6) received 1.5 

ml of endotoxin free water by i.p. and CeO2 nanoparticles (0.5 mg/kg) in 200 μl of sterile 

distilled water via the tail vein. The LPS treated group (n = 12) received LPS (055-B5; 40 

mg/kg, Sigma, St. Louis, MO) in 1.5 ml of sterile water by i.p. and 200 μl of sterile distilled 

water via the tail vein while the LPS + CeO2 NPs treatment group received LPS (40 mg/kg) 

in 1.5 ml of sterile water by i.p. and CeO2 nanoparticles (0.5 mg/kg) in 200 μl of sterile 

distilled water via the tail vein. The animal survival rate was assessed for a period of 7 days. 

LPS-induced sepsis symptoms were quantitated by monitoring animal behavior, body 

temperature and respiratory rate using a Mouse Ox Plus from Star Scientific Corp 

(Massachusetts, USA), while heart rate and blood pressure were evaluated using a CODA 

blood pressure system from Kent Scientific (Connecticut, USA).

2.3. Sample collection, estimation of blood cell number and quantification of serum 
cytokines

In an additional set of experiments, blood and livers were collected at 6 or 24 h after study 

initiation. Differential blood cells were estimated in whole blood using an Abaxis VetScan 

HM2 hematology analyzer (Abaxis, Union city, CA). Serum TNF-α levels were analyzed by 

enzyme-linked immunosorbent assay (ELISA) (BD Bioscience, Franklin Lakes, NJ). Serum 

samples from each of the different groups (n = 6/group) were pooled and sent to Myriad 

RBM (Austin, TX) for the analysis of cytokines, chemokines and markers of inflammation 

using rodent MAP® V. 3.0 as detailed elsewhere [17,18]. Nitrite in the serum was assayed 

using the Griess reaction using a kit from Cayman Chemical Company (Ann Arbor, 

Michigan, USA).
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2.4. Estimation of CeO2 nanoparticle content in the liver and analysis of liver damage

Liver ceria content was estimated by induction coupled plasma-mass spectrometry (ICP-

MS) as described elsewhere [18]. In other experiments, portions of each liver were formalin 

fixed, sectioned, and stained with hematoxylin and eosin (H&E) for histopathological 

examination. Microscopic images were captured using an EVOS XL Core microscope 

(Fisher Scientific, Pittsburgh, PA, USA). Liver damage markers in the serum were estimated 

using an Abaxis VetScan analyzer (Abaxis, UnionCity, CA) and Myriad RBM (Austin, TX).

2.5. Immunoblotting and TUNEL staining

Proteins samples were prepared from the liver for immunoblotting as detailed in Selvaraj et 

al. [16]. Liver cell apoptosis was assessed using a transferase-mediated dUTP nick-end 

labeling (TUNEL) kit (Roche Applied Science, Indianapolis, IN) as described in Selvaraj et 

al. [16].

2.6. Kupffer cell isolation and assays

Kupffer cells were isolated from rat liver and purified by differential centrifugation using a 

Percoll gradient as described previously [19]. The purity of the KCs was determined by ED1 

and ED2 staining (immunofluorescence) as described [7]. KCs were cultured and treated 

with LPS in the presence and absence of CeO2 nanoparticles for 24 h and TNF-α release 

was measured by ELISA. Reactive oxygen species (ROS) levels were determined using the 

OxiSelect™ kit from Cell Bio Labs (San Diego, CA), as outlined by the manufacturer.

2.7. Macrophage uptake of CeO2 nanoparticles and effect against LPS challenge

The cytotoxic and protective effect of CeO2 nanoparticles against LPS challenge was 

determined by the MTT assay as described in Selvaraj et al. [16]. CeO2 nanoparticle uptake 

by the macrophage cells was estimated by inductively coupled plasma-mass spectrometry 

(ICP-MS) at Elementary Analysis Inc (Lexington, Kentucky, USA) as described previously 

[20].

ROS levels were determined using the OxiSelect™ kit from Cell Bio Labs (San Diego, CA) 

while mitochondrial membrane damage was estimated by Δψm using the JC 1 dye (Cell 

Technology, Mountain View, CA) as described elsewhere [21]. Nitrite production was 

assayed using the Griess reaction kit from Cayman Chemical Company (Ann Arbor, 

Michigan, USA) as described by the manufacturer. The concentration of TNF-α, IL-6, IL-1β 

and HMGB1 in the media was measured by ELISA reagent kits as described in Selvaraj et 

al. [16].

2.8. Electromobility shift and luciferase reporter assays

The electromobility shift (EMSA) assay was performed using a commercially available kit 

(Pierce, Rockford, IL, USA) as described in Selvaraj et al. [16]. Luciferase reporter assays 

were performed using a NF-kB reporter construct from Promega (Madison, WI, USA) as 

detailed in Selvaraj et al. [16].
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2.9. Statistical analysis

Data are presented as mean ± standard error of the mean (SEM). Dependent variables were 

analyzed by one way ANOVA by Holm-Sidak test using SigmaStat (Aspire Software 

International, Auburn VA) and post-hoc testing where appropriate. A P < 0.05 was 

considered as significant.

3. Results

3.1. Characterization of CeO2 nanoparticle

SEM and TEM analysis determined the size of individual nano-particles to be between 200 

and 400 nm (Fig. 1A(i, ii)). The mean hydrodynamic diameter of CeO2 nanoparticles as 

estimated by dynamic light scattering was 53.36 ± 7.04 nm (Fig. 1B(i)). XRD spectral 

analysis confirmed the purity of CeO2 nanoparticles preparation and demonstrated well 

defined peaks 2Ɵ = 28.5, 33.1, 47.5, 56.2, 59.0 and 69.2. No other peaks related to 

impurities were detected (Fig. 1B(ii)). XSP spectral analysis indicated a higher 

concentration of Ce4+ than Ce3+ in the CeO2 nanoparticles (Fig. 1C(i)).

3.2. Effect of CeO2 nanoparticle treatment on animal mortality and physiological function

Nanoparticle treatment decreased LPS-induced mortality from 70 % to 10 % (Fig. 1C(ii), P 

< 0.05). Increases in animal survivability were associated with improvements in animal 

behavior (Selvaraj et al. Table 1 [16]), core body temperature (Fig. 1D(i), P < 0.05), 

decreased respiratory rate (Fig. 1D(ii)), and increases in blood pressure (Fig. 1E). Sepsis 

decreased the percentage of lymphocytes and increased the percentage of granulocytes at 6 

and 24 h. Nanoparticle treatment reversed these changes at the 6 h time point (Selvaraj et al. 

Table 2 P < 0.05 [16]).

3.3. Nanoparticle treatment decrease sepsis related systemic inflammation

Compared to controls, LPS-induced sepsis was associated with increased serum cytokines, 

chemokines and acute phase proteins including tumor necrosis factor alpha (TNF-α), 

interleukin-1 beta (IL-1β), interleukin-1 alpha (IL-1α) at 6 h (P < 0.05). Nanoparticle 

treatment decreased serum TNF-α, IL-1β levels at 6 h and IL-1α at both 6 and 24 h (Fig. 

2A(i,ii) and B(i), P < 0.05). Compared to controls, LPS-induced sepsis appeared to increase 

the amount of macrophage derived chemokine (MDC), macrophage inflammatory protein-1 

beta (MIP-1 β), macrophage inflammatory protein-2 (MIP-2), macrophage inflammatory 

protein-3 beta (MIP-3 β), macrophage inflammatory protein-1 alpha (MIP-1 α), monocyte 

chemotactic protein-1 (MCP-1), monocyte chemotactic protein-3 (MCP-3), granulocyte 

chemotactic protein 2 (GCP-2), and growth regulated alpha protein (KC/GROα)at 6 and 24 

h (Fig. 2B(ii) to F(ii)). Nanoparticle administration decreased the levels of MIP-2, MIP-3β, 

MCP-1, MCP-3, GCP-2 and KC/GROα at both 6 and 24 h (P < 0.05) (Fig. 2C(ii) to F(ii)). 

The expression of several other acute phase and inflammatory proteins including stem cell 

factor, myoglobin, CD-40 ligand, fibrinogen, growth hormone, heptaglobin, leptin, and 

interferon gamma induced protein 10 (IF-10) were also altered with sepsis and with 

treatment (Selvaraj et al. Table 3 [16]).
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3.4. Nanoparticle treatment increase liver ceria content and protects the liver against 
sepsis induced damage

Compared to untreated animals, liver ceria content was increased in the nanoparticle injected 

animals (Fig. 3A(ii)). Sepsis associated decreases in liver weight were attenuated with 

nanoparticle treatment (Fig. 3A(iii), P < 0.05). Histological analyses of the livers obtained 

from control animals were unremarkable. Sepsis was associated with changes in cell 

swelling, inflammation, necrosis, sinusoidal dilatation and the infiltration of cells in the 

portal area (Fig. 3B) which appeared to be diminished with nanoparticle treatment. 

Consistent with these changes in liver histology, sepsis was found to increase serum 

bilirubin (TBIL) at 24 h while serum alanine aminotransferase (ALT), glutathione S-

transferase Mu (GST-Mu), and glutathione S-transferase alpha (GST-α) levels were elevated 

at 6 and 24 h. Nanoparticle treatment decreased serum bilirubin, ALT, GST-Mu, and GST-α 

(Fig. 3C (i to iii) and D(i), P < 0.05).

3.5. Nanoparticle treatment decrease sepsis related increase in MyD88, MAPK activation, 
iNOS and HMGB1

Compared to that seen in the control animals, sepsis increased the expression of MyD 88, 

and the phosphorylation of p38-MAPK and p44/42-MAPK which were decreased with 

nanoparticle treatment (Fig. 3D(ii) and E(i, ii), P < 0.05). Sepsis increased serum nitrite 

levels at 6 and 24 h. Nanoparticle treatment decreased LPS-induced nitrite production (Fig. 

3A (i)) along with LPS associated increases in liver iNOS and HMBG-1 content (Fig. 4A(i, 

ii), P < 0.05).

3.6. Nanoparticle treatment decrease hepatic apoptosis during sepsis

To investigate the possibility that changes in liver structure were associated with cellular 

apoptosis we determined the number of nuclei staining positively for DNA fragmentation by 

TUNEL staining. As expected, we found that sepsis increased and that nanoparticle 

treatment decreased the number of TUNEL positive nuclei (Fig. 4A (iii), Fig. 4B, P < 0.05). 

These decreases in cellular apoptosis with treatment were associated with decreased 

caspase-3 cleavage (19 and 17-kDa fragments) (Fig. 4C (i), P < 0.05) and a decrease in the 

Bax/Bcl-2 ratio (Fig. 4C (ii), P < 0.05).

3.7. Nanoparticle treatment decrease LPS-induced increase in macrophage ROS level and 
cytokine release

Based on the fact that many of the cytokines/chemokines and other inflammatory regulators 

observed during SIRS are likely derived from the liver Kupffer cells [22] and from our 

serum profiling data (Fig. 2 and Selvaraj et al. Table 3 [16]) we next examined the effect of 

LPS challenge on Kupffer cell function in the absence and presence of CeO2 nanoparticles. 

Compared to control cells, LPS challenge was associated with alterations in cellular 

morphology, increased TNF-α production, and elevations in cellular ROS levels which 

appeared to be diminished with nanoparticle treatment (Fig. 4D, C(iii) and E).

Because of the difficulties associated with the continued propagation of Kuppfer cells in 

culture we next examined the effects of nanoparticle treatment in depth using cultured 
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RAW264.7 macrophages. Dose response toxicity experiments using the MTT assay 

suggested that nanoparticle dosages greater than 1 μg/ml appeared to be cytotoxic (Selvaraj 

et al. [16] Fig. 1, P < 0.05). Consistent with our in vivo data, LPS-induced increases in cell 

death were diminished with nanoparticle treatment (25, 50,100 or 1000 ng/ml) (Fig. 5A (i), 

P < 0.05). To test if the improvements in cell survival were associated with the ability of the 

nanoparticles to bind to/sequester LPS or if exposure to the nanoparticles was able to 

neutralize LPS functionality, varying doses of CeO2 nanoparticles (0,1, 5,10, 25, 50,100, or 

1000 ng/ml) were added to growth media containing LPS (2 μg/ml) and allowed to interact. 

After centrifugation to remove any suspended nanoparticles, the MTT assay was performed 

using the clarified media. Consistent with the possibility that the nanoparticles do not act to 

impair LPS functionality, we did not observe any differences in the amount of cell death 

caused between incubation of the cells with “native” and nanoparticle “exposed” LPS (Fig. 

5 A (ii)). The uptake of CeO2 nanoparticles by the RAW264.7 cells in the presence or 

absence of LPS was confirmed using ICP-MS (Fig. 5)B(i).

To investigate whether changes in cell survival were associated with alterations in cellular 

ROS, RAW264.7 cells were stained with DCFH-DA and JC-1 dyes to determine the effects 

of nanoparticle treatment on cellular superoxide levels and mitochondrial membrane 

potential (Δψm) levels, respectively [23,24]. As might be expected given the potential ROS 

scavenging ability of CeO2 nanoparticles [13,14], nanoparticle treatment was found to 

decrease LPS-induced increases in cellular ROS and mitochondrial membrane potential 

(Fig. 6A (i,ii), P < 0.05).

In addition to changes in cellular ROS, nanoparticle treatment also decreased the production 

of TNF-α, IL-6, IL-1β, and HMGB1 following LPS challenge (Fig. 5B (ii) to D(i), P<0.05). 

Similarly, nanoparticle treatment also decreased nitrite production, along with the 

upregulation of iNOS and COX-2 protein following LPS challenge (Fig. 5D(ii) to E(i,ii), (P 

< 0.05)).

3.8. Nanoparticle treatment decrease NF-kB/p65 transcriptional activity

LPS-induced decreases in IkB-α protein were abrogated following nanoparticle treatment 

(Fig. 6B (i), P < 0.05). Consistent with these data, nanoparticle treatment also decreased 

LPS-induced translocation of NF-kB/p65 to the nucleus (Fig. 6B (ii), C(i)), NF-kB/p65 

binding to DNA (Figure C(ii), D(i)), and LPS-associated increases in NF-kB transcriptional 

activity (Fig. 6D (ii), P < 0.05).

4. Discussion

Despite decades of intensive investigation and significant advances in medical technology, 

the overall mortality rate in severe sepsis patients remains unacceptably high. The aim of 

this study was to evaluate whether CeO2 nanoparticles are protective against LPS-induced 

sepsis in the Sprague Dawley rat. The primary finding of this study was that a single 

injection of CeO2 nanoparticles, in the absence of antibiotic treatment, fluid resuscitation, or 

other pharmacological intervention, was able to increase animal survivability 200% 

following a severe septic insult (Fig. 1C (ii)).
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Consistent with previous studies we found that severe sepsis was associated with changes in 

body temperature, respiratory rate, and blood pressure and blood cell counts [2,25,26]. 

Nanoparticle treatment attenuated sepsis-induced changes in these variables (Fig. 1D (i,ii), 

and E)). Given that serum cytokine/chemokine levels are highly correlated with patient 

survival [27] we next sought to determine if the nanoparticle treatment functioned to 

diminish SIRS development. As expected, we found that sepsis was associated with the 

significant upregulation of a number of different cytokines, chemokine, acute phase 

proteins, and other inflammatory mediators and importantly, that the nanoparticle treatment 

appeared to significantly blunt many of these sepsis-induced changes (Fig. 2 and Selvaraj et 

al. Table 3 [16]). These latter data are in agreement with the previous work of Kyosseva and 

colleagues who demonstrated that a single injection of nanoceria in the neurodegeneration 

prone Vldlr–/– mouse was able to attenuate the expression of several proinflammatory 

cytokines and proangiogenic growth factors [28].

To explore the mechanistic basis of this finding, we next determined where the injected 

CeO2 nanoparticles may accumulate. Similar to previous work [29], ICP-MS analysis 

demonstrated significantly higher amounts of ceria in the livers of the treated animals 

compared to that observed in the untreated animals (Fig. 3A (ii)). To examine if the CeO2 

nanoparticles were able to protect the liver injury against a septic insult we next examined if 

treatment was associated with improvement in liver structure and function. We observed that 

sepsis was associated with alterations in liver morphology (Fig. 3B) and evidence of 

diminished function as suggested by increased serum bilirubin levels (Fig. 3C (i)). In 

addition, we found that the LPS treated animals exhibited increased serum levels of the liver 

damage molecules alanine aminotransferase (ALT), glutathione S-transferase Mu (GST 

Mu), glutathione S-transferase alpha (GST-α), (Fig. 3C (ii, iii) and D(i)). Importantly, each 

of these measures were decreased significantly with nanoparticle treatment (Fig. 3C (i-iii) 

and D(i)). Supporting these data, we also found that the nanoparticle treatment was 

associated with diminished hepatic MyD88 levels, p-p38 MAPK phosphorylation, p-

ERK1/2, iNOS, and HMGB-1 suggesting that nanoparticle treatment was also associated 

with decreased liver inflammation (Fig. 3D (ii), E(i,ii) and Fig. 4 A(i,ii)). These data are 

consistent with the previous work of Cai et al. [30], and Kyosseva and co-workers [28] who 

also demonstrated that the administration of nanoceria was associated with decreased 

evidence of cellular inflammation and the attenuation of MAPK phosphorylation. To extend 

these findings we next examined if the nanoparticle treatment was also able to protect the 

liver from sepsis-induced apoptosis. As expected, we found that the nanoparticle treatment 

was associated with a diminished number of TUNEL positive hepatic nuclei, decreased 

caspase-3 cleavage, and a reduction in the Bax/Bcl-2 ratio (Fig. 4A (iii) 4B, and C (i-ii)).

Given that many of cytokines and chemokines (e.g. TNF-α, IL-6, MDC, MIP-1β, MIP-2, 

MIP-3β, MCP-3, KC/GROα) that we found to be elevated with sepsis and decreased with 

treatment are thought to be derived from the liver Kuppfer cells (macrophages) [5,31], we 

next examined the function of these particles in isolated Kupffer cells. We found that 

nanoparticle treatment was associated with decreased TNF-α release and cellular ROS levels 

after LPS challenge (Fig. 4C (iii) and E). Using cultured RAW264.7 macrophages which we 

could easily propagate, we repeated this experimental approach and found that the 

nanoparticle treatment decreased LPS-induced increases in the secretion of TNF-α, IL-6, 
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IL-1β and HMGB1 (Fig. 5B (ii) to D (i)). In addition to elevations in cytokine concentration, 

it has also been suggested that the large amount of nitric oxide (NO) produced during sepsis 

may play an important role in sepsis-induced mortality which has led some to postulate that 

decreasing NO levels may be beneficial [32,33]. Our in vivo and in vitro data show a 

significant decrease in the NO production in serum as well as cultured macrophages 

following nanoparticle treatment (Fig. 3A (i) and Fig. 5D (ii)). To confirm this finding, we 

next examined how CeO2 nanoparticle affected the expression of inducible nitric oxide 

synthase (iNOS) which is the enzyme thought to be responsible for much of the NO 

produced during the septic insult. Paralleling our findings of decreased serum nitrite (Fig. 

3A (i)) and diminished iNOS levels (Fig. 4A (i)) in the livers of the nanoparticle treated 

animals, we found that the nanoparticles also diminished LPS-induced expression of iNOS 

in cultured macro-phages (Fig. 5E (i)).

The mechanism(s) regulating cytokine and NO production in macrophages following LPS 

stimulation are not yet fully understood, however recent data has suggested that elevations 

in intracellular ROS levels may play an important role [34]. To examine this possibility, we 

next determined how nanoparticle treatment might affect cellular ROS and mitochondrial 

membrane potential levels by DCFH-DA and JC-1 staining. Consistent with previous 

reports using macrophages [35–37], we found that CeO2 nanoparticle treatment tended to 

decrease the induction of cellular ROS in RAW macro-phage cells and mitochondrial 

membrane potential damage following LPS challenge (Fig. 6A (i, ii)).

It is thought that NF-kB and mitogen activated protein kinases (MAPK) are key regulators 

of inflammatory gene expression [38]. Although the factors regulating NF-kB transcriptional 

activity are not fully understood, it is well known that nuclear localization of the redox 

sensitive NF-kB transcription factor is controlled by the phosphorylation and subsequent 

degradation of IkB-α [35]. It has been reported that LPS challenge (2 μg/ml) can be used to 

induce the degradation of IkB-α and nuclear localization of NF-kB/p65 in cultured 

RAW264.7 macrophages [39,40]. Consistent with our previous data, we found that 

nanoparticle treatment functioned to attenuate LPS-induced IkB-α degradation and NF-

kB/p65 trans-location from the cytoplasm to the nucleus (Fig. 6B (i,ii) and C(i)). 

Importantly, we also noted that these decreases in NF-kB trans-location were also associated 

with diminished NF-kB binding to DNA (Fig. 6C (ii) and D (i)) and reduced NF-kB 

transcriptional activation (Fig. 6D(ii) P < 0.05).

5. Conclusion

In summary, our data suggest that a single dose of CeO2 nanoparticles is associated with 

improvements in animal survival, decreased hepatic damage, increased ceria deposition in 

the liver, and diminished evidence of systemic inflammation after a severe septic insult. In 

vitro experimentation using isolated Kupffer cells and cultured RAW264.7 macrophages 

demonstrated that CeO2 nanoparticle treatment decreased cytokine release (TNF-α, IL-1 β, 

IL-6, HMGB1), the induction of iNOS, NF-kB transcriptional activity following LPS 

challenge (Selvaraj et al. [16] Fig. 1), and MAPK (Selvaraj et al. [41] Fig. 1). Given that the 

large scale manufacture of these particles is possible using existing technology and their 

likely stability under a wide range of environmental conditions it is possible that these 

Selvaraj et al. Page 9

Biomaterials. Author manuscript; available in PMC 2015 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particles may have application for the treatment of sepsis in austere environments. 

Additional studies examining the potential efficacy of CeO2 nanoparticles for the treatment 

of sepsis may be warranted.
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Fig. 1. Characterization of CeO2 nanoparticles, animal survivability and physiological changes
A (i) Scanning electron microscopy (SEM) image of CeO2 nanoparticles, A (ii) 

Transmission electron microscopy (TEM) image of CeO2 nanoparticles, B (i) Dynamic light 

scattering (DLS) image of CeO2 nanoparticles, B (ii) X-ray diffraction image of CeO2 

nanoparticles, and C (i) X-ray photoelectron spectroscopy image of CeO2 nanoparticles. C 

(ii) Animal survivability of control (vehicle only, n = 6), CeO2 nanoparticle treated (0.5 

mg/kg, n = 6), sepsis (40 mg/kg of LPS, n = 16), and sepsis + CeO2 nanoparticle treatment 

(40 mg/kg of LPS + 0.5 mg/kg of CeO2 nanoparticles (n = 16)), D (i) Temperature, D (ii) 

Respiratory rate, and (E) Blood pressure. *P < 0.05 compared to control group, *#P < 0.05 

compared to LPS group.
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Fig. 2. Effect of CeO2 nanoparticles on LPS induced alteration of serum cytokines and 
chemokines
Cytokines changes: A (i) Tumor necrosis factor alpha (TNF-α), A (ii) interleukin 1 beta 

(IL-1β), B (i) Interleukin 1 alpha (IL-1α). Chemokines changes: B (ii) macrophage derived 

chemokines (MDC), C (i) macrophage inflammatory protein 1 beta (MIP-1β), C (ii) 

macrophage inflammatory protein-2 (MIP-2), D (i) macrophage inflammatory protein-3 beta 

(MIP-3β), D (ii) macrophage inflammatory protein-1 alpha (MIP-1α), E (i) monocyte 

chemotactic protein-1 (MCP-1), E (ii) monocyte chemotactic protein-3 (MCP-3), F (i) 

granulocytes chemotactic protein (GCP-2), and F (ii) growth regulated alpha protein (KC/

GROα). Serum samples were pooled from control (n = 6), CeO2 (n = 6), Sepsis (n = 6), 

Sepsis + CeO2 (n = 6) and analyzed in triplicate. Values are mean ± SEM of 3 independent 

experiments performed in triplicate. Statistical significance was determined by a one way 

ANOVA using Holm–Sidak test. *P < 0.05 compared to control group, *#P < 0.05 

compared to LPS group.
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Fig. 3. Protective effect of CeO2 nanoparticles on LPS-induced liver failure in vivo via MyD 
dependent MAP kinase pathway
A (i) nitric oxide production in serum, A (ii) presence of cerium in liver, A (iii) liver weight 

change. B histological change of liver (H & E, Scale bars = 100 μm), C (i) total bilirubin 

(TBIL), C (ii) alanine aminotransferase (ALT), C (iii) glutathione S transferae (GST-Mu) 

and D (i) glutathione S transferase (GST-α). Levels of total and phosphorylated proteins 

were determined by western blotting and normalized to GAPDH respectively, D (ii) MyD 

88, E (i) P-p38, and E (ii) P-ERK 44/42. Samples were pooled from control (n = 6), CeO2 (n 

= 6), Sepsis (n = 6), Sepsis + CeO2 (n = 6) and analyzed in triplicate. Values are mean ± 

SEM of 3 independent experiments performed in triplicate. Statistical significance was 

determined by a one way ANOVA using Holm–Sidak test. *P < 0.05 compared to control 

group, *#P < 0.05 compared to sepsis group.
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Fig. 4. Effect of CeO2 nanoparticles on inflammatory mediators, apoptosis and Kupffer cell 
changes induced by LPS
Levels of inflammatory mediator proteins were determined by western blotting and 

normalized to GAPDH respectively: A (i) iNOS, A (ii) HMGB1. B mitochondria dependent 

apoptosis was determined by TUNEL staining (Scale bar = 100 μm), A (iii) quantification of 

TUNEL positive nuclei, C (i) total and cleaved caspase-3, and C (ii) Bax/Bcl-2 ratio. 

Samples were pooled from control (n = 6), CeO2 (n = 6), Sepsis (n = 6), Sepsis + CeO2 (n = 

6) and analyzed in triplicate. Kupffer cell culture and changes: Cells were exposed to LPS in 

the presence and absence of CeO2 nanoparticles for 24 h (D) morphological changes (Scale 

bar = 200 μm), C (iii) TNF-α, and (E) ROS production (Scale bar = 200 μm). Kupffer cells 

were isolated from three different animals from each group at 3 different time points (n = 3). 

Values are mean ± SEM of 3 independent experiments performed in triplicate. Statistical 

significance was determined by a one way ANOVA using Holm–Sidak test. *P < 0.05 

compared to control group, *#P < 0.05 compared to sepsis group.
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Fig. 5. Effect of CeO2 nanoparticles on survival, ROS, Δψm, and cytokines production induced 
by LPS in RAW cells
Cells were exposed to LPS in the presence and absence of CeO2 nanoparticles for 24 h. A (i) 

protective effect of CeO2 nanoparticles against LPS insult, A (ii) CeO2 nanoparticles does 

not have any tendency to bind with LPS and neutralizing the functionality of LPS. B (i) 

amount of cerium oxide uptake by macrophage confirmed by ICP-MS analysis, B (ii) tumor 

necrosis factor alpha (TNF-α). C (i) interleukin-6 (IL-6), C (ii) interleukin-1 beta (IL-1β). D 

(i) high mobility box group protein-1 (HMGB1), D (ii) measurement of nitrite in the 

medium as determined by ELISA and E (i) and E (ii) expression of iNOS and COX-2 by 

western blot analysis. Values are mean ± SEM of 3 independent experiments. Statistical 

significance was determined by a one way ANOVA using Holm–Sidak test. *Significant 

difference from control (P < 0.05). *# Significant difference from LPS treatment (P < 0.05).
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Fig. 6. 
Effect of CeO2 nanoparticles on NO production and the expression of iNOS and COX-2 and 

translocation of NF-kB/p65 in RAW 264.7 cells. Cells were exposed to LPS in the presence 

and absence of CeO2 nanoparticles for 24 h. A (i) reactive oxygen species production (ROS) 

was determined by 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) (Scale bar = 50 

μm), A (ii) mitochondrial membrane potential (Δψm) was determined by JC-1 (Scale bar = 

50 μm). B (i) expression of IkB-α in whole cell lysate, B (ii) measurement of NF-kB in 

cytoplasmic and nuclear extracts C (i) by immunoblotting, C (ii) a representative image of 

EMSA binding of NF-kB to DNA and quantification of EMSA by densitometry D (i), and D 

(ii) NF-kB luciferase activity by Luciferase reporter assay. Values are mean ± SEM of 3 

independent experiments. *Significantly different from control (P < 0.05). *# Significantly 

different from LPS treatment (P < 0.05).
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