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Abstract

The TGF-β signaling pathway regulates cellular proliferation and differentiation. We evaluated 

genetic variation in this pathway, its association with breast cancer survival, and survival 

differences by genetic ancestry and self-reported ethnicity.

The Breast Cancer Health Disparities Study includes participants from the 4-Corners Breast 

Cancer Study (n = 1391 cases) and the San Francisco Bay Area Breast Cancer Study (n=946 

cases) who have been followed for survival. We evaluated 28 genes in the TGF-β signaling 

pathway using a tagSNP approach. Adaptive rank truncated product (ARTP) was used to test the 

gene and pathway significance by Native American (NA) ancestry and by self-reported ethnicity 

(non-Hispanic white (NHW) and Hispanic/NA).

Genetic variation in the TGF-β signaling pathway was associated with overall breast cancer 

survival (PARTP = 0.05), especially for women with low NA ancestry (PARTP =0.007) and NHW 

women (PARTP =0.006). BMP2, BMP4, RUNX1. and TGFBR3 were significantly associated with 

breast cancer survival overall (PARTP=0.04, 0.02, 0.002, and 0.04 respectively). Among women 

with low NA ancestry associations were: BMP4 (PARTP = 0.007), BMP6 (PARTP = 0.001), GDF10 

(PARTP=0.05), RUNX1 (PARTP=0.002), SMAD1 (PARTP=0.05), and TGFBR2 (PARTP=0.02). A 
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polygenic risk model showed that women with low NA ancestry and high numbers of at-risk 

alleles had twice the risk of dying from breast cancer as did women with high NA ancestry.

Our data suggest that genetic variation in the TGF-β signaling pathway influences breast cancer 

survival. Associations were similar when the analyses were stratified by genetic ancestry or by 

self-reported ethnicity.
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The TGF-β signaling pathway regulates cellular proliferation, differentiation, apoptosis, and 

extracellular matrix remodeling and is involved in angiogenesis and inflammatory response 

[1]. The TGF-β family can be divided into two signaling pathways: (1) the bone 

morphogenetic proteins (BMPs) and growth and differentiations factors (GDFs); and (2) the 

TGFβs, activins, and myostatin. Smad proteins mediate the cellular effects of the TGF-β 

protein family, with BMPs and GDFs acting through Smad1, Smad5, and Smad8, whereas 

other members of the TGF-β family act through Smad2 and Smad3 [2]. The Smad pathway 

is thought to be the major TGF-β signal transduction pathway [3]. The Runt-related 

transcription factors (RUNX), including RUNX1, RUNX2, and RUNX3, also are involved 

in the TGF-β signaling pathway. Studies in RUNX3 knockout mice have shown apoptotic 

defects in response to TGF-β; RUNX2 transgenic mice have been shown to be hypersensitive 

to TGF-β[4]. All three RUNX genes have been shown to bind Smads [5–7], thus further 

influencing the TGF-β signaling pathway.

It is biologically plausible that alterations of the TGF-β signaling pathway may influence 

breast cancer prognosis given its regulatory role in angiogenesis, inflammation, and tumor 

growth. Although in early stages of cancer TGF-β may exhibit tumor suppressive effects, in 

later stages of breast cancer it appears to be pro-tumorigenic by stimulating invasion[8]. 

Moreover, high serum levels and high levels of expression of TGF-β and its receptors have 

been linked to breast cancer prognosis [9] and presence of phosphorylated-Smad2 has been 

associated with positive node status [10]. A study by deKruijf and colleagues [8] showed 

that high levels of TGF-β receptor expression in conjunction with Smad expression 

conferred an unfavorable prognosis after breast cancer diagnosis. The RUNX transcription 

factors also have been proposed as influencing survival, with RUNX2 being highly 

expressed in cell lines that are metastatic to bone. Because of BMPs' role in bone formation, 

they have been examined for their involvement in metastasis to the bone after breast cancer 

diagnosis and disease progression [11]. Additionally, BMPs have been associated with 

estrogen-induced proliferation of breast cancer cells [12]. One study has shown that BMP-

Smad activation is involved in the progression of estrogen receptor positive (ER+) breast 

cancers specifically [13].

Incidence and mortality rates of breast cancer have been shown to vary by race and ethnicity 

[14, 15]. Among women in the Southwestern United States, those who are Native American 

(NA) have breast cancer incidence rates that are roughly one quarter to one third of those 

observed for women who are classified as non-Hispanic white (NHW). Hispanic women 
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have breast cancer incidence rates between women who are NA and those of European 

descent. Differences in breast cancer risk factors, such as parity, do not account for these 

differences [16]. Exploration of differences in disease rates can utilize genetic ancestry 

under the assumption that biological differences stemming from genetic factors influence the 

carcinogenic process. On the other hand, consideration of self-reported race/ethnicity as a 

stratification tool can focus on unidentified cultural factors that may contribute to disparities 

in cancer rates and might be common across the population, irrespective of underlying 

genetic differences. We considered these two methods of stratification to help understand 

the biological and cultural contributions to breast cancer survival.

In this study we evaluated the associations between genetic variability in the TGF-β 

signaling pathway and survival after diagnosis with breast cancer. We evaluated TGFβ1 and 

its receptors, SMAD genes, BMP genes and their receptors, RUNX genes, activins and their 

receptors (ACVR1, ACVR2A, ACVR2B, and ACVRL1), and GDFs (GDF10 and myostatin). 

We evaluated associations in an admixed population of NHW and Hispanic and Native 

American (NA) women, giving us the capability to examine associations by genetic ancestry 

as well as by self-reported ethnicity. We also evaluated survival after diagnosis with breast 

cancer by estrogen receptor (ER) and progesterone receptor (PR) tumor type.

Methods

This analysis from the Breast Cancer Health Disparities Study includes participants with 

information on survival from two population-based case-control studies, the 4-Corners 

Breast Cancer Study (4-CBCS) that included women from Arizona, Colorado, New Mexico 

and Utah, and the San Francisco Bay Area Breast Cancer Study (SFBCS) [14] who 

completed an in-person interview and who had a blood or mouthwash sample available for 

DNA extraction. In the 4-CBCS, participants were between 25 and 79 years of age with a 

histologically confirmed diagnosis of first primary invasive breast cancer (n=1391) between 

October 1999 and May 2004[17]. The SFBCS included women aged 35 to 79 years from the 

San Francisco Bay Area diagnosed with a first primary histologically confirmed invasive 

breast cancer (n= 946) between April 1997 and April 2002 [18, 19]. All participants signed 

informed written consent prior to participation; this study was approved by the Institutional 

Review Boards for Human Subjects at the University of Utah and the Cancer Prevention 

Institute of California.

Data Harmonization

Data used as adjustment variables were harmonized across the study centers and study-

specific questionnaires as previously described [14]. Women were asked to self-report race 

and, with the option to report multiple categories if appropriate, i.e., NHW and Hispanic, 

Hispanic and NA. Women who reported any Hispanic ethnicity or NA were broadly 

classified as being Hispanic. Women also were classified as either pre-menopausal or post-

menopausal based on responses to questions on menstrual history. Women were considered 

as post-menopausal if they reported either a natural menopause or if they reported taking 

hormone therapy (HT) and were still having periods or were at or above the 95th percentile 
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of age for those who reported having a natural menopause (i.e. ≥ 12 months since their last 

period); other were classified as pre-menopausal.

Genetic Data

DNA was extracted from either whole blood or mouthwash samples. Whole Genome 

Amplification (WGA) was applied to the mouthwash-derived DNA samples prior to 

genotyping. Quality control results were comparable for the two DNA sources. A tagSNP 

approach was used to characterize variation across candidate genes. TagSNPs were selected 

using the following parameters: linkage disequilibrium (LD) blocks were defined using a 

Caucasian LD map and an r2=0.8; minor allele frequency (MAF) >0.1; range of −1500 bps 

from the initiation codon to +1500 bps from the termination codon; and 1 SNP/LD bin. 

Additionally, 104 Ancestry Informative Markers (AIMs) were used to distinguish European 

and NA ancestry in the study population [14]. All markers were genotyped using a 

multiplexed bead array assay format based on GoldenGate chemistry (Illumina, San Diego, 

California). In the current analysis, we evaluated the following genes in the TGF-β signaling 

pathway: ACVR1 (16 SNPs), ACVR2A (6 SNPs), ACVR2B (3 SNPs), ACVRL1 (4 SNPs), 

BMP1 (10 SNPs), BMP2 (6 SNPs), BMP4 (4 SNPs), BMP6 (23 SNPs), BMP7 (24 SNPs), 

BMPR1A (9 SNPs), BMPR1B (18 SNPs), BMPR2 (8 SNPs), GDF10 (6 SNPs), MSTN (1 

SNP), RUNX1 (8 SNPs), RUNX2 (17 SNPs), and RUNX3 (8 SNPs), SMAD1 (4 SNPs), 

SMAD2 (5 SNPs), SMAD3 (40 SNPs), SMAD4 (2 SNPs), SMAD6 (1 SNP), SMAD7 (10 

SNPs), TGFβ1 (2 SNPs), TGFβRI (5 SNPs), TGFβ2 (1 SNP), TGFβR2 (1 SNP), and 

TGFβR3 (5 SNPs). Supplemental Table 1 (online) details the genes and SNPs evaluated. 

Genotyping was completed for 933 women from the 4-CBCS who self-identified as NHW, 

412 Hispanic, 8 American Indian, 14 NHW/Hispanic, 10 NHW/American Indian, 10 

Hispanic/American Indian, and 4 NHW/Hispanic/American Indian and for 252 women from 

the SFBCS self-reported being NHW and 694 who reported being Hispanic.

Tumor Characteristics and Survival

Data on survival were available from local cancer registries that provided information on 

date of death or last follow-up (month and year), cause of death, and stage of disease at time 

of diagnosis. Survival (in months) was calculated as the difference between diagnosis date 

and date of death or last follow-up. Survival information was complete for each study 

through May of 2012. Information on cause of death was provided and was classified as 

breast cancer if either the primary or contributing cause of death was noted as breast cancer. 

SEER summary stage data were classified as local, regional, or distant. ER and PR tumor 

status was provided by local tumor registries which included the Utah Cancer Registry, the 

New Mexico Cancer Registry, the Arizona Cancer Registry, the Colorado Cancer Registry, 

and the Northern California Cancer Registry.

Statistical Methods

The program STRUCTURE was used to compute individual ancestry for each study 

participant assuming two founding populations [20, 21]. A three-founding population model 

was assessed, but did not fit the population structure with the same level of repeatability and 

correlation among runs as the two-founding population model. Participants were classified 
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by level of percent NA ancestry. Assessment across categories of ancestry was done using 

cut-points based on the distribution of genetic ancestry in the study control population (2597 

Hispanic/NA and 1586 NHW controls) with the goal of creating distinct ancestry groups that 

had sufficient power to assess associations, especially when looking at menopausal status 

within admixture groups. Two strata of ≤28% and >28% were used to evaluate associations 

by level of NA ancestry. Genetic ancestry was used as a continuous variable when included 

in the models to adjust for possible confounding.

Associations between SNPs and risk of dying of breast cancer were evaluated using Cox 

proportional hazards models to obtain multivariate hazard ratios (HR) and 95% confidence 

intervals (CI) for all women and for women stratified by genetic ancestry, self-reported 

ethnicity (either NHW or Hispanic/NA) and by ER/PR status using SAS version 9.3 (SAS 

Institute, Cary, NC). We were not able to evaluate the category of ER−/PR+ tumors because 

there were too few women available for analysis. Individuals were censored when they died 

of causes other than breast cancer or were lost to follow-up. All SNPs were evaluated as a 

co-dominant model and if initial analysis suggested too few homozygous variant carriers a 

dominant model was used. However, in some instances the recessive model clearly fit the 

data and was used to calculate risk estimates. In addition to the minimal adjustments for age, 

study center, body mass index (BMI) in the referent year, parity, and genetic ancestry 

models also were adjusted for SEER summary stage. ER/PR tumor status was not adjusted 

in these models since these markers were not associated with tumor status and survival. 

Further adjustment for self-reported ethnicity did not alter associations (data not shown in 

tables). SNP p values were based on 1 degree of freedom (df) Wald chi-square tests, 

comparing the homozygote variants to the common genotypes when the co-dominant model 

was indicated. Interactions between genetic variants and genetic ancestry, self-reported 

ethnicity, and ER/PR status related to survival were assessed using p values from one and 

two degree of freedom Wald chi-square tests respectively.

We used the adaptive rank truncated product (ARTP) method (http://dceg.cancer.gov/bb/

tools/artp) that utilizes a highly efficient permutation algorithm to determine the significance 

of each gene and of the TGF-β signaling pathway with survival after breast cancer diagnosis 

[22, 23]. We permuted the breast cancer survival outcome 10,000 times in R version 3.0.1 

(R Foundation for Statistical Computing, Vienna, Austria). SNP associations were assessed 

among the observed and permuted data in R using p values from likelihood-ratio tests 

comparing full Cox proportional hazards models adjusted for age, BMI in referent year, 

disease stage, and genetic ancestry to reduced models excluding the SNP term. We report 

both gene and pathway p values (PARTP) based on five truncation points.

A polygenic risk summary score was created to estimate the risk of mortality associated with 

this pathway. SNPs included in the summary score were restricted to those located on genes 

with a PARTP of 0.10 or less for all women and/or for the specific ancestry strata; only those 

SNPs that contributed to the best fitting ARTP model were selected. The score for each SNP 

was based on the inheritance model with the co-dominant or additive model having a score 

of zero, one, or two based on the number of high-risk alleles, whereas scores of zero or two 

were assigned for the dominant and recessive models. At-risk alleles were assigned based on 

specific ancestry group risk. Risk estimates, based on varying numbers of at-risk alleles, 
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were estimated from proportional hazards models, taking into account confounding variables 

as described above. Cut-points were selected to maintain at least 10 deaths in each category. 

Women missing genotype data on two or more SNPs were excluded.

Results

Fifty percent of all deaths among NHW and 57% of all deaths among Hispanic/NA women 

were from breast cancer (Table 1). Of the 1152 women who self-reported being Hispanic or 

NA, 10.4% had NA ancestry levels at or below 18%, compared to 99% of NHW women. 

The majority of women who self-reported being Hispanic or NA had over 28% NA ancestry. 

Women were more likely to die if they were older at the time of diagnosis, had ER-/PR- 

tumors, or were diagnosed when their tumor was at a more advanced stage. There was no 

statistically significant difference in survival among women who self-reported being NHW 

or Hispanic/NA or when categorized by level of NA ancestry.

When considering all women, genetic variation across the entire TGF-β-signaling pathway 

was significantly associated with breast cancer mortality (Pathway PARTP = 0.045). When 

considering individual genes, we observed statistically significant associations for BMP2, 

BMP4, RUNX1, and TGFBR3 (Gene PARTP = 0.04, 0.02, 0.002, and 0.04 respectively) 

(Table 2). There were a few SNPs in other genes that also showed statistically significant 

associations; however, the corresponding genes did not show overall association of 

statistical significance as summarized by ARTP. One SNP was significantly associated with 

breast cancer survival for BMP1 (rs13257482), BMP2 (rs7270163), BMP6 (rs270413), 

BMPR1B (rs10049681), RUNX2 (rs598953), SMAD2 (rs1792658), TBFβR1 (rs6478974) 

andTBFβR3 (rs6678564) at the 0.05 level or less, two SNPs were associated with breast 

cancer survival for GDF10 (rs7093975 and rs1902724) and RUNX1 (rs1474479 and 

rs1883066), and three SNPs were associated for BMP4 (rs17563, rs2761887, and 

rs4898820). There were no significant differences in mortality by ER/PR status for any of 

the genes evaluated (see online supplement table 2)

Women with low NA ancestry or who reported being NHW had a pathway PARTP of 0.007 

and 0.006, respectively, while women with higher NA ancestry or who reported having any 

Hispanic/NA ethnicity pathway PARTP values of 0.18 and 0.51, respectively. A comparison 

of gene and SNP associations by genetic ancestry and by self-reported ethnicity is shown in 

Table 3. Several genes in the pathway were associated with breast cancer survival with 

findings being similar when comparing women with low NA ancestry and NHW women or 

when comparing those women with higher NA ancestry levels and those who self-reported 

being Hispanic or NA. Among women with low NA ancestry, PARTP values were significant 

at or below the 0.05 level for six of 12 pathway genes (Table 3): BMP4, BMP6, GDF10, 

RUNX1, SMAD1, and TGFBR2. Similar associations were observed in BMP4, BMP6, 

GDF10, RUNX1, and SMAD1 in NHW women, although TFGBR2 was not statistically 

significant. In general, individual SNP p values tended to be slightly stronger for NHW 

women and those with higher NA ancestry.

Evaluation of associations based on p values is influenced by sample size. In our study 

evaluation by self-reported ethnicity resulted in a slightly larger sample for those with low 
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NA ancestry vs. NHWs and women who self-reported being Hispanic /NA vs. women with 

high NA ancestry. This is because roughly 19% of those who self-reported being Hispanic 

or NA were in the lower NA ancestry group. Thus, we compared the associations for SNPs 

that were different either by genetic ancestry or by self-reported ethnicity (Table 4 shows all 

SNPs where the p for interaction was <0.05). For the most part, associations were strikingly 

similar between groups, especially when looking at risk estimates within strata.

The polygenic risk model showed increasing risk of dying from breast cancer with 

increasing number of at-risk alleles. This increased risk was observed for each NA ancestry 

group (Figure 1) although women with the highest risk of dying associated with increasing 

number of at-risk alleles were those with the lowest NA ancestry. It is of interest to note that 

among women in the lowest category of at-risk alleles, 4.5% of those with low NA ancestry 

and 5.3% of those with higher NA ancestry died from breast cancer. This is in contrast to 

27% of women with low NA ancestry and 19.8% of those with higher NA ancestry who 

were in the highest category of at-risk alleles.

Discussion

In this study, we have taken a comprehensive gene and pathway approach to assess the 

association between genetic variations in the TGF-β signaling pathway and survival after 

breast cancer diagnosis. Examination of associations by both genetic ancestry and self-

reported ethnicity provided insight into the potential biological basis for differences in 

associations. Stronger associations with the pathway were observed for those women with 

lower NA ancestry (PARTP = 0.007) compared with women with higher NA ancestry (PARTP 

= 0.18). Associations with genes that were most important also varied slightly by level of 

NA ancestry. Among those with low NA ancestry the most significant associations were 

with BMPs, TGFB1 and its receptors, and RUNX1. SMAD and Activin genes had little 

influence on mortality overall or in specific NA ancestry groups.

Bone is the most common metastatic site for breast cancer [24]. BMPs are key factors in 

bone formation and thought to play a major role in bone metastasis[25]. However, the roles 

of BMPs are complex, with studies showing both growth promoting and inhibitory effects 

[26]. BMP2 has been associated with both decreased cell proliferation and promotion of 

invasiveness in MCF-7 breast cancer cells [27]. BMP2, BMP4, BMP6, and BMP7 have been 

shown to induce angiogenesis [24]. BMP7 has been shown to promote cell migration and 

invasion [28] and BMP7 protein expression has been associated with accelerated bone 

metastasis [28]. BMPRIA has been shown to prolong survival in mice by reducing 

invasiveness and bone metastasis [29], whereas BMPRIB has been associated with high 

tumor grade and poor prognosis [30]. Thus, there is support for the hypothesis that BMPs 

and their receptors influence survival after diagnosis with breast cancer. Genes that seemed 

most important with regard to survival in our study were BMP4 and GDF10 for all women 

and BMP6 among women with low NA ancestry. BMP4 has been suggested as a promoter 

of invasive behavior although it has been shown to reduce migration and invasion [31]. 

GDF10 expression, through its interaction with RUNX2, has been associated with lung 

cancer survival [32], although studies in breast cancer are lacking. BMP6 has been 

associated with estrogen induced breast cancer cell proliferation [33, 34] and has been 
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shown to inhibit apoptosis in breast cancer cells [35]. Associations between specific BMP-

related SNPs and breast cancer prognosis have not been reported. Our data suggest the 

importance of genetic variation in these genes in survival after diagnosis with breast cancer, 

although little is known about functionality of specific SNPs associated with risk.

Genetic variation in RUNX 1 was highly associated with breast cancer survival overall and 

especially among women with low NA ancestry. Most studies to date have reported on 

RUNX2 which promotes cell migration and invasive properties leading to metastatic bone 

disease [36–38]. Inactivation of RUNX3 also has been associated with breast cancer 

progression [39]. However, a genome-wide association analysis of ER alpha showed that 

RUNX1 is involved in ER regulation of genes [40]. RUNX1 also has been shown to be 

mutated in breast cancers [41]. For the RUNX1 SNPs that were associated with survival in 

our study, having a variant allele was for the most part associated with increased risk (in one 

instance it was protective). This could indicate that lower levels of RUNX1 could 

subsequently impact regulation of other important genes associated with the ER or work 

through multiple mechanisms. While the exact mechanism can only be speculated, our 

finding merits replication in other studies.

TGF-β has been shown to have both tumor promoting and tumor inhibitory action [42]. 

Studies have shown that during tumor progression the tumor inhibitory effects are lost, 

whereas the tumor promoting effects remain intact [42]. Expression of TGF-βR2 has been 

associated with longer survival time among women with ER- tumors [42]. Some studies 

have shown that TGF-β1 protein levels are associated with shorter disease-free survival, 

especially among those with node-negative tumors[9], whereas others have reported 

associations between TGFβ1-expressing tumors and a greater likelihood of breast cancer 

recurrence[43, 44]. A study by Mu [45] found significantly higher TGF-β1 expression with 

the TT genotype of rs1982073, with an accompanying two-fold increase in risk of breast 

cancer death; the study by Zheng supported these findings [46]. We found a similar 

association with rs1800469 for women with higher levels of NA ancestry, but not for 

women with low NA ancestry. It is not clear why the association was seen only among 

women with higher NA ancestry. Because these women are more likely to have ER- tumors 

it is possible that they are more susceptible to the effects of TGF-β. However, we did not see 

differences in its association with survival according to ER status. Our findings suggest that 

among women with higher NA ancestry, alterations in the TGF-β signaling pathway might 

be more relevant for breast cancer progression, perhaps due to other genetic alterations more 

likely to be present in the NA ancestral background, or from other unidentified non-genetic 

risk factors that correlate with high NA ancestry and are associated with survival.

Many associations with breast cancer survival were observed, regardless of NA ancestry or 

ethnicity. However, as mentioned above, some associations differed by genetic ancestry 

with similar differences by self-reported ethnicity. While the reasons for these differences 

are not clear, it is known that at the population level breast cancer incidence and mortality 

rates vary by NA ancestry [14, 15], suggesting a possible biological underpinning. In 

general the pathway, gene, and SNP associations were more significant for women who 

reported being NHW or who were classified as having low NA ancestry. However, in some 

instances associations were different between self-reported race/ethnicity and NA ancestry 
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group. While unidentified factors associated with culture could contribute to these 

observations, they likely stem from genetic ancestry modifying the risk of breast cancer 

death associated with these genes. A logical explanation for these differences is 

misclassification stemming from arbitrary cut-points. Women who reported being only 

NHW have the lowest level of genetic ancestry which is slightly lower than that of the low 

NA ancestry group. Women within the highest NA ancestry group have been determined by 

AIMs to have the most NA ancestry. Half of the women who self-reported being Hispanic or 

NA in the low admixture group had admixture comparable to the NHW, however the other 

half had levels higher than most of the NHW but lower than the majority of women who 

reported being Hispanic or NA. When looking at genetic ancestry by case and control status, 

cases who self-reported being Hispanic or NA were significantly (p=0.006) more likely to 

be in the very low of the ancestry group than were controls. Our data suggest that evaluating 

the most extreme ends of the distribution of the data separates the effects associated with 

genetic ancestry. Although utilization of genetic ancestry markers to classify individuals is 

based on a set of markers measured in everyone, the cut-points selected were arbitrary and 

chosen to maximize power.

Misclassification by self-reported ethnicity is also possible given that some people report 

multiple races and may report ethnicity differentially for a myriad of reasons, especially 

individuals with mixed ancestry. Follow-up with some participants in the New Mexico 

center resulted in some people actually changing their self-reported ethnicity (personnel 

communication K. Baumgartner). As stated earlier, our data suggest that cases were more 

likely to have lower NA ancestry than controls, which corresponds to disease trends that 

show that women of European ancestry have higher breast cancer incidence rates than those 

with more NA ancestry. We have adjusted associations for known factors that could 

influence risk of breast cancer death and differ by race/ethnicity, i.e. BMI, although we 

acknowledge that other unidentified factors could be present. Given that our research is 

driven by the observed differences in breast cancer risk by NA ancestry, we believe that 

results obtained using genetic ancestry maximizes power, accurately discriminate the 

biological influences of NA ancestry, and are generally reinforced by our assessment 

associations stratified by ethnicity.

While the study has several strengths, including a large population-based sample of both 

NHW and Hispanic/NA women to evaluate associations with survival within a targeted 

candidate pathway, there are also limitations. We focused the analysis on genes within the 

pathway rather than individual tagSNPs. However, a logical next step is to examine the 

tagSNPs we identified as being important and the pathway in more depth in order to identify 

potentially functional SNPs that could be targeted for therapy. Additionally, since tagSNPs 

were not based on NA populations, some important SNPs could have been missed that 

influence risk among those with greater NA ancestry; further evaluation of tagSNPs in NA 

populations is warranted. The study included women who participated in the original case-

control studies and we lack the capability to evaluate these associations among non-

participants. Our analysis my not have included women with more advanced disease who 

may have been too sick to participate or were deceased before being contacted for the study. 

It is therefore possible that associations would have been stronger if women with more 

advanced disease had been included in the analysis. Additionally, there are limitations to our 
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polygenic risk score. Although we utilized ARTP permutated data to identify important 

genes and SNPs, another dataset for validation would be desirable. It should also be 

recognized that the risk estimates presented could be inflated, although setting an ARTP p 

value of <0.10 helps mitigate this effect. Detailed treatment data were not available, 

although we believe that adjustment for disease stage helps to overcome this limitation. 

Despite these limitations, we believe that the main messages are valid. First, risk increases 

with increasing “at-risk” alleles. We found that 5% of women in the lowest category of at-

risk alleles died compared with almost 20% of women in the highest category of at-risk 

alleles. Second, the risk of dying for women with low NA ancestry in the highest category of 

at-risk alleles is almost twice that observed for women with higher NA ancestry.

In conclusion, our data suggest that genetic variation in the TGF-β signaling pathway 

influences survival after breast cancer. Associations were observed for both NHW and 

Hispanic women, although several genes were more strongly associated among women with 

low NA ancestry. Our data suggest that stratification that is able to best separate the effects 

of genetic ancestry is the most robust when evaluating genetic risk. Future studies that 

confirm these findings and determine functionality of SNPs within the pathway will enhance 

our understanding of the TGF-β signaling pathway and hopefully help identify potential 

drug targets to improve breast cancer prognosis.
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Figure 1. 
Hazard ratios associated with number of at-risk alleles in genes as determined by the 

polygenic risk score in the TGF-β-Signaling Pathway.
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Table 2

Associations between TGF-β signaling pathway genes and breast-specific mortality cancer in all women

GENE Deaths/Person Years HR
2

(95% CI) Gene PARTP
1

Pathway PARTP

BMP1 0.21 0.045

rs13257482 GG 139 / 11706 1.00

GA/AA 75 / 8593 0.73 (0.55, 0.97)

BMP2 0.04

rs7270163 AA 179 / 15236 1.00

AG/GG 38 / 5164 0.60 (0.42, 0.86)

BMP4 0.02

rs17563 TT 48 / 4833 1.00

TC 87 / 8790 1.06 (0.74, 1.52)

CC 49 / 4002 1.59 (1.04, 2.44)

rs2761887 AA 53 / 6048 1.00

AC 110 / 10406 1.33 (0.96, 1.85)

CC 54 / 3960 1.70 (1.16, 2.49)

rs4898820 TT 71 / 5599 1.00

TG/GG 146 / 14805 0.75 (0.56, 1.00)

BMP6 0.14

rs270413 TT/TC 183 / 16040 1.00

CC 34 / 4377 0.66 (0.46, 0.96)

BMPR1B 0.44

rs10049681 TT 92 / 7878 1.00

TC/CC 125 / 12551 0.73 (0.55, 0.96)

GDF10 0.06

rs7093975 CC 130 / 11311 1.00

CT 79 / 7526 0.95 (0.71, 1.26)

TT 8 / 1554 0.46 (0.22, 0.93)

rs1902724 AA 113 / 8909 1.00

AC/CC 104 / 11497 0.74 (0.57, 0.97)

RUNX1 0.002

rs1474479 GG 106 / 10705 1.00

GA 86 / 7916 1.09 (0.81, 1.46)

AA 25 / 1798 1.67 (1.07, 2.62)

rs1883066 GG 194 / 16047 1.00

GC/CC 23 / 4383 0.46 (0.29, 0.71)

RUNX2 0.20

rs598953 TT 91 / 7644 1.00

TA 107 / 9851 0.85 (0.64, 1.12)

AA 19 / 2934 0.51 (0.31, 0.83)

SMAD2 0.16

rs1792658 AA 125 / 10762 1.00
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GENE Deaths/Person Years HR
2

(95% CI) Gene PARTP
1

Pathway PARTP

AC 79 / 7766 0.84 (0.63, 1.13)

CC 13 / 1902 0.54 (0.30, 0.96)

TGFβR1 0.21

rs6478974 TT 58 / 6815 1.00

TA/AA 159 / 13601 1.35 (1.00, 1.84)

TGFβR3 0.04

rs6678564 GG 195 / 17037 1.00

GC/CC 22 / 3392 0.56 (0.36, 0.87)

1
Gene PARTP=0.08 for TGFβ1 because of strong association in highest NA ancestry group.

2
Hazard Ratios (HR) and 95% Confidence Intervals (CI) among primary invasive cases adjusted for age, study, BMI during referent year, parity, 

genetic ancestry, and SEER summary stage.

Cancer Causes Control. Author manuscript; available in PMC 2015 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Slattery et al. Page 19

Table 3

Comparison of associations with breast cancer survival by genetic ancestry and self-reported race/ethnicity.

Percent Native American Ancestry Self-Reported Race/Ethnicity

≤28 >28 NHW Hispanic/Native American

Gene SNP SNP P Gene PARTP SNP P Gene PARTP SNP P Gene PARTP SNP P Gene PARTP

BMP1 rs7812993 (D) 0.06 0.11 0.02 0.24 0.05 0.06 0.05 0.24

rs3924231 (D) 0.05 0.85 0.02 0.69

rs3924229 (D) 0.07 0.27 0.03 0.25

BMP4 rs17563 0.02 0.007 0.92 0.8 0.005 0.003 0.88 0.83

rs762642 0.02 0.94 0.01 0.94

rs2761887 0.005 0.40 0.001 0.45

rs4898820 (D)
1

0.03 0.58 0.01 0.68

BMP6 rs10498671 (D) <0.0001 0.001 0.30 0.12 0.0002 0.005 0.82 0.22

rs267806 (D) 0.08 0.31 0.04 0.25

rs11243204 (D) 0.84 0.008 0.82 0.05

rs6910759 0.49 0.01 0.15 0.003

rs2068361 0.86 0.007 0.81 0.03

rs911749 (D) 0.03 0.40 0.02 0.62

rs11964227 0.0006 0.47 0.001 0.79

BMPR1B rs7698964 (D) 0.40 0.13 0.05 0.24 0.79 0.15 0.23 0.72

rs4145993 (D) 0.05 0.33 0.08 0.53

rs7694043 (D) 0.007 0.54 0.01 0.79

rs3796442 (D) 0.12 0.05 0.14 0.12

BMPR2 rs1980153 (D) 1.00 0.82 0.30 0.06 0.18 0.54 0.04 0.06

rs4675278 (D) 0.51 0.04 0.89 0.19

rs12621870 (D) 0.88 0.007 0.79 0.03

rs1199496 (D) 0.92 0.07 0.59 0.01

GDF10 rs7093975 0.04 0.05 0.42 0.33 0.10 0.56 0.24 0.05

rs762454 (R)
1

0.02 0.78 0.03 0.65

rs11598444 (D)
1

0.50 0.27 0.67 0.06

rs1902725 (D) 0.43 0.15 0.61 0.02

rs1902724 (D)
1

0.13 0.08 0.74 0.01

RUNX1 rs2268288 (D)
1

0.01 0.002 0.50 0.17 0.03 0.0004 0.84 0.18

rs1474479 0.004 0.96 0.003 0.90

rs1883066 (D)
1

0.003 0.04 0.0004 0.15

SMAD1 rs714195 (R)
1

0.03 0.05 0.83 0.72 0.02 0.03 0.62 0.77

rs12505085 (D)
1

0.04 0.57 0.06 0.72

SMAD3 rs12708492 (D) 0.05 0.4 0.02 0.82 0.08 0.68 0.10 0.85

TGFB1 rs1800469 0.81 0.53 0.002 0.004 0.51 0.82 0.02 0.06
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Percent Native American Ancestry Self-Reported Race/Ethnicity

≤28 >28 NHW Hispanic/Native American

Gene SNP SNP P Gene PARTP SNP P Gene PARTP SNP P Gene PARTP SNP P Gene PARTP

TGFBR2 rs3773644 (D)
1

0.02 0.02 0.71 0.81 0.23 0.58 0.39 0.38

TGFBR3 rs6678564 (D)
1

0.04 0.16 0.09 0.11 0.17 0.48 0.02 0.05

1
Interaction p value > 0.05 for genetic ancestry and race/ethnicity but SNP contributes to significant strata-specific gene PARTP. Model selection 

is D=dominant; R = recessive; all others are co-dominant.

2
SNP p values based on Cox proportional hazard models adjusted for age, study, BMI during referent year, parity, genetic ancestry, and SEER 

summary stage among primary invasive breast cancer cases.
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