Why Measles Matters

Division of Immunization Services Webinar May 22, 2014

Gregory S Wallace, MD, MS, MPH
Lead, Measles/Mumps/Rubella/Polio Team
Epidemiology Branch, Division of Viral Diseases
National Center for Immunization and Respiratory Diseases
Centers for Disease Control and Prevention

What is Measles

- Febrile rash illness
- Most contagious of the vaccine preventable diseases
- Highly effective vaccine part of the routine immunization schedule

Clinical Presentation

- Rash ~14 days after exposure (range 7-21 days)
- Fever (up to $105^{\circ} \mathrm{F}$)
- Cough, Coryza, and/or Conjunctivitis

Measles Rash

- Follows prodrome lasting 2-4 days
- Prodrome may include Koplick Spots
- Erythematous maculopapular eruptions
- Spreads from head to trunk to extremities
- Initially blanching
- Fades in order of appearance

Measles Complications

Condition

Diarrhea
Otitis media
Pneumonia
Encephalitis
Death

Percent reported 8

7-9 1-6
0.05-0.1
0.1-0.2
(2-15 in developing countries)
Subacute Sclerosing Panencephalitis (SSPE)

Global Burden of Measles

- Prior to Vaccine: 5-8 million deaths/year
- 77\% decrease in incidence from 2000 to 2012
- 78\% decrease in deaths from 2000 to 2012 (90\% since 1985)
- 122,000 deaths in 2012 (~ 14 deaths/hour)
- Remains a leading cause of Vaccine Preventable Deaths in young children
- Most deaths in children under 5 years old

Measles Disease Incidence by WHO
 Region

FIGURE. Reported measles linclidence permillion population, by world Health Organlzation region and worldwide, 2000-2011

Ahbreviations: APR = Africanc AMR - Americas; EMA - Eastern Mediterranearc; ELIR - European; SEAR = Scuth-East Asia; WPR - Western Pacific

- As a milestone to measles eradication, the World Health Organization has set a goal of reducing the global incidence of measles to cs cases par million population by 2015 .

Measles Case Distribution by Month and WHO Regions, 2008-2014

This is surveillance data, hence for the last month, the data may be incomplete.
SEAR India is not included in this graph.

Measles Outbreak, France, 2008-2011 ($n>20,000$)

Antona, et al. EID 2013;19:357-364.

Measles Outbreak, Quebec, Canada, 2011 ($\mathrm{n}=725$)

De Serres, et al. JID 2013;207:990-8.

Measles cases by month of rash onset Philippines, 2009-2014*

US Annual Disease Burden Prior to Vaccine

- 3-4 million estimated and $\sim 500,000$ reported cases
- 48,000 hospitalizations
- 4,000 encephalitis cases
- 450-500 deaths

Measles Cases, United States, 1962-2014*

*2014 case count preliminary as of May 16

Reported Measles Incidence United States, 1992-2014*

199219941996199820002002200420062008201020122014
Year

Measles, United States, 2001-2014* Age Specific Incidence

*2014 case count preliminary as of May 16

Measles, United States, 2001-2014* Importations by WHO Region

*2014 case count preliminary as of May 16

Measles, United States, Jan - May 16, 2014 Source of Importations (N=45)

WHO Region	\# of cases	
African	0	
Eastern		
Mediterranean	1	Pakistan
European	4	Dubai/Germany/London (1), Republic of Georgia (1), Netherlands (1), France/Belgium
Americas	4	Brazil (1), Canada (2), Chile (1)
South-East Asia	7	India (7)
Western Pacific	29	China (2), Philippines (22), Singapore (1), Saipan (1), Vietnam (1), SE Asia/Philippines (1), Malaysia/Micronesia (1)

Most Measles Cases Result in Limited Transmission

Figure 7. Measles Chains of Transmission Proportion by Chain Length, United States 1997-2011

2014: 80% with 1 or 2 chains of transmission, 4% with 10 or more

Measles, United States, 1996-Present*

(Importations indicated by hashed lines from 2001)

Measles Outbreaks with 20 or more Cases, United States, 2001-2014*

Year	Outbreak Name	State	Cases \#	Import Status	Genotype	Setting	1st \& last rash onsets	Duration	Median Age	Age Range
2014	Knox County	OH	69*	Imported (Philippines)	D9	Community	$\begin{gathered} 3 / 24 / 2014- \\ 5 / 7 / 2014 \end{gathered}$	8 weeks and counting	22 y	12 mos-52y
2013	Brooklyn	NYC	58	Imported (UK)	D8	Household/ community	$\begin{gathered} 3 / 13 / 2013- \\ 6 / 9 / 2013 \end{gathered}$	13 weeks	10 y (early) 19 mos (late)	$0 \mathrm{mos}-32 \mathrm{y}$
2005	Tippecanoe County	IN	34	Imported (Romania)	D4	Church/ household	$\begin{gathered} 5 / 16 / 2005- \\ 6 / 24 / 2005 \end{gathered}$	6 weeks	12 y	$9 \mathrm{mo}-49 \mathrm{y}$
2008	DuPage/Cook County	IL	30	Importedvirus	D4	Homeschool	$\begin{gathered} 5 / 17 / 2008- \\ 7 / 3 / 2008 \end{gathered}$	7 weeks	10 y	$8 \mathrm{mo}-43 \mathrm{y}$
2013	Stokes/Orange County	NC	23	Imported (India)	D8	Community	$\begin{gathered} 4 / 5 / 2013- \\ 5 / 7 / 2013 \end{gathered}$	5 weeks	14 y	$12 \mathrm{mo}-59 \mathrm{y}$
2013	Tarrant/Denton County	TX	21	Imported (Indonesia)	D9	Church	$\begin{gathered} 7 / 21 / 2013- \\ 8 / 21 / 2013 \end{gathered}$	5 weeks	11 y	$4 \mathrm{mos}-44 \mathrm{y}$
2011	Hennepin County	MN	21	Imported (Kenya)	B3	Shelter	$\begin{gathered} 2 / 15 / 2011- \\ 4 / 24 / 2011 \end{gathered}$	10 weeks	23 m	$3 \mathrm{mo}-51 \mathrm{y}$
2008	Brooklyn/ Kings County	NYC	21	Imported (Israel, Belgium)	D4	Community	$\begin{gathered} \text { 2/17/2008 } \\ 4 / 25 / 2008 \end{gathered}$	10 weeks	15 m	$5 \mathrm{mo}-11 \mathrm{y}$
2014	Manhattan	NYC	20	Imported-virus	B3	Community	$\begin{gathered} 2 / 16 / 2014- \\ 3 / 24 / 2014 \end{gathered}$	5 weeks	23 y	$3 \mathrm{mo}-36 \mathrm{y}$

[^0]
Measles outbreak response has a high economic burden in the U.S.

Year	Location	Number of cases (outbreaks)	Estimated public health cost*
2011	US	$107(16)$	$\$ 2.7-5.3 \mathrm{M}$
2011	Utah	$13(2)$	$>\$ 330,000$
2008	California	$12(1)$	$\$ 125,000$
2008	Arizona	$14(1)$	$\$ 800,000$ (limited to cost for 2 hospitals to respond to 7 cases in their facilities)
2005	Indiana	$34(1)$	$\$ 168,000$
2004	Iowa	1	$\$ 142,000$

[^1]
Measles, U.S., 1997-2014*

Cumulative Number by Month of Rash Onset

*As of May 16, 2014

Measles U.S. 2014*

- 216 cases reported from 15 states including 15 outbreaks
- 45 importations
- 22 from the Philippines
- 38 (85\%) US residents
- 96\% cases import-associated
- 38 cases (17\%) hospitalized
- Cases in US residents ($\mathrm{N}=207$)
- 63\% unvaccinated
- 25% unknown vaccination status (90% of those adults)
- 12% vaccinated (including 8% with 2 or more doses)
- Among unvaccinated
- 83% were personal belief exemptors
- 6% unvaccinated travelers age 6-15 mos
- 7% too young to be vaccinated
* Provisional reports to CDC through May 16, 2014

Measles Vaccine

- Available as Measles, Mumps, Rubella (MMR) in the U.S.
- Licensed in 1963 in the U.S.
- Combination MMR vaccine licensed in 1971
- Vaccine Effectiveness
- 1-dose: ~93\%
- 2-dose: ~97\%

ACIP Measles Vaccine Recommendation History

1963: Age 9 mos

1965: Age 12 mos

1967: Age 15 mos

1989: 2 doses (as MMR) @ age 15 mos \& 4-6 yrs

1994: 2 doses (12-15 mos \& 4-6 yrs)

Travel Recommendations for Measles

- Persons aged ≥ 12 months should receive 2 doses*
- Includes providing a $2^{\text {nd }}$ dose to children prior to age 4-6 yrs
- Includes adults** who have only received one routine dose in the past
- Children aged 6-11 months should receive 1 dose
- If vaccinated at age 6-11 months, still need 2 subsequent doses at age ≥ 12 months
* 2nd dose of MMR should be administered at least 28 days after the $1^{\text {st }}$ dose
** Born in 1957 or later

Keys to Measles Prevention, Diagnosis, \& Response

- Vaccine
- Vaccine Rates
- VE
- Diagnostics
- Differential Diagnosis
- Hx \& PE
- Lab testing
- Case Response
- Reporting
- Contact Investigation
- Presumptive evidence of immunity
- Isolation and Quarantine
- Post Exposure Prophylaxis

MMR Vaccination Coverage National Immunization Survey, U.S.

\square MMR 1+ (19-35 mo) MMR 2+ (13-17 yr)

Diagnosing Measles

- Consider measles in differential diagnosis of febrile rash illness
- e.g. Kawasaki's, Dengue
- Travel History or Exposure to Recent Travelers
- Documented Vaccine History
- Lab testing
- Serology for IgM
- Viral specimen (nasopharyngeal, oropharyngeal, or nasal swab) for PCR (and genotyping)

Public Health Response (for confirmed and suspect cases)

- Respiratory isolation of cases
- Infectious period 4 days prior through 4 days after date of rash onset
- Report to Health Department
- Immediately notifiable to CDC (within 24 hours)
- Contact CDC Quarantine Station if relevant travel
- Enhanced Surveillance
- Contact investigation

Contact Investigation for Exposure to Measles

- Persons exposed during cases infectious period
- Includes exposure to area 2 hours after case left
- Establish presumptive evidence of immunity for contacts
- Quarantine of contacts without presumptive evidence of immunity (through 21 days after exposure)
- Postexposure prophylaxis (PEP)
- Vaccine or Immune globulin (IG)

Presumptive Evidence of Immunity for Measles

Routine	Students at post-high school educational institutions	Health-care personnel	International travelers
(1) Documentation of age-appropriate vaccination with a live measles virus-containing vaccine: -preschool-aged children: 1 dose -school-aged children (grades K-12): 2 doses -adults not at high risk: 1 dose, or (2) Laboratory evidence of immunity, or (3) Laboratory confirmation of disease, or (4) Born before 1957	(1) Documentation of vaccination with 2 doses of live measles viruscontaining vaccine, or (2) Laboratory evidence of immunity, or (3) Laboratory confirmation of disease, or (4) Born before 1957	(1) Documentation of vaccination with 2 doses of live measles viruscontaining vaccine, or (2) Laboratory evidence of immunity, or (3) Laboratory confirmation of disease, or (4) Born before 1957 - should consider 2 doses	(1) Documentation of age-appropriate vaccination with a live measles virus-containing vaccine: -infants aged 6-11 months: 1 dose -persons aged ≥ 12 months: 2 doses, or (2) Laboratory evidence of immunity, or (3) Laboratory confirmation of disease, or (4) Born before 1957

Postexposure Prophylaxis (PEP) MMR Vaccine

- Administer within 72 hours of exposure
- May return to normal activities (except health care settings)
- Still monitor for symptoms
- Can be given down to age 6 months
- Be aware of possibility of vaccine rash

Postexposure Prophylaxis (PEP) Immune Globulin

- Administer within 6 days of exposure
- Recommended Dose
- Intramuscular (IGIM): $0.5 \mathrm{~mL} / \mathrm{kg}$ (max = 15 mL)
- Intravenous (IGIV): $400 \mathrm{mg} / \mathrm{kg}$
- Recommended for the following groups (risk of severe disease and complications)
- Infants aged <12 months (IGIM)
- Pregnant women without evidence of immunity (IGIV)
- Severely immunocompormised patients (IGIV)

Does the Vaccine Really Work?

23% of cases vaccinated

Keys to Maintaining Elimination in the U.S.

- High 2-dose MMR vaccine coverage
- High quality surveillance
- Rapid identification of and response to measles cases
- Reportable within 24 hours per Council of State and Territorial Epidemiologists (CSTE) guidelines
- Aggressive outbreak control measures
- Information sharing tools (Epi-X, HAN)

Keeping Sight on the Successes

- Elimination Achieved \& Maintained
- Vaccine Works, Disease Recognizable
- Eradication Possible \& Achievable
- Outbreaks are Limited (size \& \# of generations)
- High Overall Vaccine Coverage
- Rapid/Aggressive Public Health Response to (suspect) Cases

Measles Era Approaching Elimination

- Measles is due to Failure to Vaccinate
- Measles Elimination is a Global Problem
- Maintenance of Elimination is Resource Intensive
- Maintaining vaccine coverage
- Intensive case/contact investigations
- Healthcare workers diagnostic skills
- Advanced laboratory techniques

Summary of Measles Elimination in the U.S.

- Declared in the U.S. in 2000
- Pan American Health Organization (PAHO) documenting for the Americas
- Huge Public Health Achievement
- Brings New Challenges
- Case investigations very resource intensive
- Continued global threat
- Highly contagious
- Clustering, accumulation, and aging of susceptibles

DISCUSSION

[^0]: *as of May 16, 2014

[^1]: *Public health and health care costs expended to control the spread of measles

